當前位置: 首頁>>代碼示例>>Python>>正文


Python linear_model.BayesianRidge方法代碼示例

本文整理匯總了Python中sklearn.linear_model.BayesianRidge方法的典型用法代碼示例。如果您正苦於以下問題:Python linear_model.BayesianRidge方法的具體用法?Python linear_model.BayesianRidge怎麽用?Python linear_model.BayesianRidge使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在sklearn.linear_model的用法示例。


在下文中一共展示了linear_model.BayesianRidge方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_iterative_imputer_estimators

# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import BayesianRidge [as 別名]
def test_iterative_imputer_estimators(estimator):
    rng = np.random.RandomState(0)

    n = 100
    d = 10
    X = sparse_random_matrix(n, d, density=0.10, random_state=rng).toarray()

    imputer = IterativeImputer(missing_values=0,
                               max_iter=1,
                               estimator=estimator,
                               random_state=rng)
    imputer.fit_transform(X)

    # check that types are correct for estimators
    hashes = []
    for triplet in imputer.imputation_sequence_:
        expected_type = (type(estimator) if estimator is not None
                         else type(BayesianRidge()))
        assert isinstance(triplet.estimator, expected_type)
        hashes.append(id(triplet.estimator))

    # check that each estimator is unique
    assert len(set(hashes)) == len(hashes) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:25,代碼來源:test_impute.py

示例2: getModels

# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import BayesianRidge [as 別名]
def getModels():
    result = []
    result.append("LinearRegression")
    result.append("BayesianRidge")
    result.append("ARDRegression")
    result.append("ElasticNet")
    result.append("HuberRegressor")
    result.append("Lasso")
    result.append("LassoLars")
    result.append("Rigid")
    result.append("SGDRegressor")
    result.append("SVR")
    result.append("MLPClassifier")
    result.append("KNeighborsClassifier")
    result.append("SVC")
    result.append("GaussianProcessClassifier")
    result.append("DecisionTreeClassifier")
    result.append("RandomForestClassifier")
    result.append("AdaBoostClassifier")
    result.append("GaussianNB")
    result.append("LogisticRegression")
    result.append("QuadraticDiscriminantAnalysis")
    return result 
開發者ID:tech-quantum,項目名稱:sia-cog,代碼行數:25,代碼來源:scikitlearn.py

示例3: build_model

# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import BayesianRidge [as 別名]
def build_model(self):
            # Direct passing model parameters can be used
            return linear_model.BayesianRidge(normalize=True, verbose=True, compute_score=True)


        
# ----- END first stage stacking model -----

# ----- Second stage stacking model ----- 
開發者ID:ikki407,項目名稱:stacking,代碼行數:11,代碼來源:regression.py

示例4: __init__

# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import BayesianRidge [as 別名]
def __init__(self):
        self.reg = linear_model.BayesianRidge() 
開發者ID:paris-saclay-cds,項目名稱:ramp-workflow,代碼行數:4,代碼來源:regressor.py

示例5: load_default

# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import BayesianRidge [as 別名]
def load_default(self, machine_list='basic'):
        """
        Loads 4 different scikit-learn regressors by default. The advanced list adds more machines. 

        Parameters
        ----------
        machine_list: optional, list of strings
            List of default machine names to be loaded.
        Returns
        -------
        self : returns an instance of self.
        """

        if machine_list == 'basic':
            machine_list = ['tree', 'ridge', 'random_forest', 'svm']
        if machine_list == 'advanced':
            machine_list=['lasso', 'tree', 'ridge', 'random_forest', 'svm', 'bayesian_ridge', 'sgd']

        self.estimators_ = {}
        for machine in machine_list:
            try:
                if machine == 'lasso':
                    self.estimators_['lasso'] = linear_model.LassoCV(random_state=self.random_state).fit(self.X_k_, self.y_k_)
                if machine == 'tree':
                    self.estimators_['tree'] = DecisionTreeRegressor(random_state=self.random_state).fit(self.X_k_, self.y_k_)
                if machine == 'ridge':
                    self.estimators_['ridge'] = linear_model.RidgeCV().fit(self.X_k_, self.y_k_)
                if machine == 'random_forest':
                    self.estimators_['random_forest'] = RandomForestRegressor(random_state=self.random_state).fit(self.X_k_, self.y_k_)
                if machine == 'svm':
                    self.estimators_['svm'] = LinearSVR(random_state=self.random_state).fit(self.X_k_, self.y_k_)
                if machine == 'sgd':
                    self.estimators_['sgd'] = linear_model.SGDRegressor(random_state=self.random_state).fit(self.X_k_, self.y_k_)
                if machine == 'bayesian_ridge':
                    self.estimators_['bayesian_ridge'] = linear_model.BayesianRidge().fit(self.X_k_, self.y_k_)
            except ValueError:
                continue
        return self 
開發者ID:bhargavvader,項目名稱:pycobra,代碼行數:40,代碼來源:cobra.py

示例6: load_default

# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import BayesianRidge [as 別名]
def load_default(self, machine_list='basic'):
        """
        Loads 4 different scikit-learn regressors by default. The advanced list adds more machines. 
        Parameters
        ----------
        machine_list: optional, list of strings
            List of default machine names to be loaded. 
            Default is basic,
        Returns
        -------
        self : returns an instance of self.
        """
        if machine_list == 'basic':
            machine_list = ['tree', 'ridge', 'random_forest', 'svm']
        if machine_list == 'advanced':
            machine_list=['lasso', 'tree', 'ridge', 'random_forest', 'svm', 'bayesian_ridge', 'sgd']

        self.estimators_ = {}
        for machine in machine_list:
            try:
                if machine == 'lasso':
                    self.estimators_['lasso'] = linear_model.LassoCV(random_state=self.random_state).fit(self.X_k_, self.y_k_)
                if machine == 'tree':
                    self.estimators_['tree'] = DecisionTreeRegressor(random_state=self.random_state).fit(self.X_k_, self.y_k_)
                if machine == 'ridge':
                    self.estimators_['ridge'] = linear_model.RidgeCV().fit(self.X_k_, self.y_k_)
                if machine == 'random_forest':
                    self.estimators_['random_forest'] = RandomForestRegressor(random_state=self.random_state).fit(self.X_k_, self.y_k_)
                if machine == 'svm':
                    self.estimators_['svm'] = SVR().fit(self.X_k_, self.y_k_)
                if machine == 'sgd':
                    self.estimators_['sgd'] = linear_model.SGDRegressor(random_state=self.random_state).fit(self.X_k_, self.y_k_)
                if machine == 'bayesian_ridge':
                    self.estimators_['bayesian_ridge'] = linear_model.BayesianRidge().fit(self.X_k_, self.y_k_)
            except ValueError:
                continue
        return self 
開發者ID:bhargavvader,項目名稱:pycobra,代碼行數:39,代碼來源:kernelcobra.py

示例7: test_model_bayesian_ridge

# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import BayesianRidge [as 別名]
def test_model_bayesian_ridge(self):
        model, X = fit_regression_model(linear_model.BayesianRidge())
        model_onnx = convert_sklearn(
            model, "bayesian ridge",
            [("input", FloatTensorType([None, X.shape[1]]))])
        self.assertIsNotNone(model_onnx)
        dump_data_and_model(
            X,
            model,
            model_onnx,
            basename="SklearnBayesianRidge-Dec4",
            allow_failure="StrictVersion("
            "onnxruntime.__version__)"
            "<= StrictVersion('0.2.1')",
        ) 
開發者ID:onnx,項目名稱:sklearn-onnx,代碼行數:17,代碼來源:test_sklearn_glm_regressor_converter.py

示例8: test_objectmapper

# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import BayesianRidge [as 別名]
def test_objectmapper(self):
        df = pdml.ModelFrame([])
        self.assertIs(df.linear_model.ARDRegression, lm.ARDRegression)
        self.assertIs(df.linear_model.BayesianRidge, lm.BayesianRidge)
        self.assertIs(df.linear_model.ElasticNet, lm.ElasticNet)
        self.assertIs(df.linear_model.ElasticNetCV, lm.ElasticNetCV)

        self.assertIs(df.linear_model.HuberRegressor, lm.HuberRegressor)

        self.assertIs(df.linear_model.Lars, lm.Lars)
        self.assertIs(df.linear_model.LarsCV, lm.LarsCV)
        self.assertIs(df.linear_model.Lasso, lm.Lasso)
        self.assertIs(df.linear_model.LassoCV, lm.LassoCV)
        self.assertIs(df.linear_model.LassoLars, lm.LassoLars)
        self.assertIs(df.linear_model.LassoLarsCV, lm.LassoLarsCV)
        self.assertIs(df.linear_model.LassoLarsIC, lm.LassoLarsIC)

        self.assertIs(df.linear_model.LinearRegression, lm.LinearRegression)
        self.assertIs(df.linear_model.LogisticRegression, lm.LogisticRegression)
        self.assertIs(df.linear_model.LogisticRegressionCV, lm.LogisticRegressionCV)
        self.assertIs(df.linear_model.MultiTaskLasso, lm.MultiTaskLasso)
        self.assertIs(df.linear_model.MultiTaskElasticNet, lm.MultiTaskElasticNet)
        self.assertIs(df.linear_model.MultiTaskLassoCV, lm.MultiTaskLassoCV)
        self.assertIs(df.linear_model.MultiTaskElasticNetCV, lm.MultiTaskElasticNetCV)

        self.assertIs(df.linear_model.OrthogonalMatchingPursuit, lm.OrthogonalMatchingPursuit)
        self.assertIs(df.linear_model.OrthogonalMatchingPursuitCV, lm.OrthogonalMatchingPursuitCV)
        self.assertIs(df.linear_model.PassiveAggressiveClassifier, lm.PassiveAggressiveClassifier)
        self.assertIs(df.linear_model.PassiveAggressiveRegressor, lm.PassiveAggressiveRegressor)

        self.assertIs(df.linear_model.Perceptron, lm.Perceptron)
        self.assertIs(df.linear_model.RandomizedLasso, lm.RandomizedLasso)
        self.assertIs(df.linear_model.RandomizedLogisticRegression, lm.RandomizedLogisticRegression)
        self.assertIs(df.linear_model.RANSACRegressor, lm.RANSACRegressor)
        self.assertIs(df.linear_model.Ridge, lm.Ridge)
        self.assertIs(df.linear_model.RidgeClassifier, lm.RidgeClassifier)
        self.assertIs(df.linear_model.RidgeClassifierCV, lm.RidgeClassifierCV)
        self.assertIs(df.linear_model.RidgeCV, lm.RidgeCV)
        self.assertIs(df.linear_model.SGDClassifier, lm.SGDClassifier)
        self.assertIs(df.linear_model.SGDRegressor, lm.SGDRegressor)
        self.assertIs(df.linear_model.TheilSenRegressor, lm.TheilSenRegressor) 
開發者ID:pandas-ml,項目名稱:pandas-ml,代碼行數:43,代碼來源:test_linear_model.py

示例9: __init__

# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import BayesianRidge [as 別名]
def __init__(self, descriptor: Union[BaseFeaturizer, BaseDescriptor], *, targets={}, **estimators: BaseEstimator):
        """
        Gaussian loglikelihood.

        Parameters
        ----------
        descriptor: BaseFeaturizer or BaseDescriptor
            Descriptor calculator.
        estimators: BaseEstimator
            Gaussian estimators follow the scikit-learn style.
            These estimators must provide a method named ``predict`` which
            accesses descriptors as input and returns ``(mean, std)`` in order.
            By default, BayesianRidge_ will be used.

            .. _BayesianRidge: https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.BayesianRidge.html#sklearn-linear-model-bayesianridge
        targets: dictionary
            Upper and lower bounds for each property to calculate the Gaussian CDF probability
        """
        if estimators:
            self._mdl = deepcopy(estimators)
        else:
            self._mdl = {}

        if not isinstance(descriptor, (BaseFeaturizer, BaseDescriptor)):
            raise TypeError('<descriptor> must be a subclass of <BaseFeaturizer> or <BaseDescriptor>')
        self._descriptor = descriptor
        self._descriptor.on_errors = 'nan'

        self._targets = deepcopy(targets) 
開發者ID:yoshida-lab,項目名稱:XenonPy,代碼行數:31,代碼來源:estimator.py

示例10: predict

# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import BayesianRidge [as 別名]
def predict(self, smiles, **kwargs):
        fps = self._descriptor.transform(smiles, return_type='df')
        fps_ = fps.dropna()
        tmp = {}
        for k, v in self._mdl.items():
            if isinstance(v, BayesianRidge):
                tmp[k + ': mean'], tmp[k + ': std'] = v.predict(fps_, return_std=True)
            else:
                tmp[k + ': mean'], tmp[k + ': std'] = v.predict(fps_, **kwargs)

        tmp = pd.DataFrame(data=tmp, index=fps_.index)
        return pd.DataFrame(data=tmp, index=fps.index)

    # todo: implement scale function 
開發者ID:yoshida-lab,項目名稱:XenonPy,代碼行數:16,代碼來源:estimator.py

示例11: test_gaussian_ll_1

# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import BayesianRidge [as 別名]
def test_gaussian_ll_1(data):
    bre = deepcopy(data['bre'])
    bre2 = data['bre2']
    X, y = data['pg']

    assert 'bandgap' in bre._mdl
    assert 'glass_transition_temperature' in bre._mdl
    assert 'refractive_index' in bre2._mdl
    assert 'density' in bre2._mdl

    ll = bre.log_likelihood(X.sample(10),
                            bandgap=(7, 8),
                            glass_transition_temperature=(300, 400))
    assert ll.shape == (10,2)
    assert isinstance(bre['bandgap'], BayesianRidge)
    assert isinstance(bre['glass_transition_temperature'], BayesianRidge)

    with pytest.raises(KeyError):
        bre['other']

    with pytest.raises(TypeError):
        bre['other'] = 1
    bre['other'] = BayesianRidge()

    bre.remove_estimator()
    assert bre._mdl == {} 
開發者ID:yoshida-lab,項目名稱:XenonPy,代碼行數:28,代碼來源:test_iqspr.py

示例12: _get_learner

# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import BayesianRidge [as 別名]
def _get_learner(self):
        # xgboost
        if self.learner_name in ["reg_xgb_linear", "reg_xgb_tree", "reg_xgb_tree_best_single_model"]:
            return XGBRegressor(**self.param_dict)
        if self.learner_name in ["clf_xgb_linear", "clf_xgb_tree"]:
            return XGBClassifier(**self.param_dict)
        # sklearn
        if self.learner_name == "reg_skl_lasso":
            return Lasso(**self.param_dict)
        if self.learner_name == "reg_skl_ridge":
            return Ridge(**self.param_dict)
        if self.learner_name == "reg_skl_random_ridge":
            return RandomRidge(**self.param_dict)
        if self.learner_name == "reg_skl_bayesian_ridge":
            return BayesianRidge(**self.param_dict)
        if self.learner_name == "reg_skl_svr":
            return SVR(**self.param_dict)
        if self.learner_name == "reg_skl_lsvr":
            return LinearSVR(**self.param_dict)
        if self.learner_name == "reg_skl_knn":
            return KNNRegressor(**self.param_dict)
        if self.learner_name == "reg_skl_etr":
            return ExtraTreesRegressor(**self.param_dict)
        if self.learner_name == "reg_skl_rf":
            return RandomForestRegressor(**self.param_dict)
        if self.learner_name == "reg_skl_gbm":
            return GradientBoostingRegressor(**self.param_dict)
        if self.learner_name == "reg_skl_adaboost":
            return AdaBoostRegressor(**self.param_dict)
        # keras
        if self.learner_name == "reg_keras_dnn":
            try:
                return KerasDNNRegressor(**self.param_dict)
            except:
                return None
        # rgf
        if self.learner_name == "reg_rgf":
            return RGFRegressor(**self.param_dict)
        # ensemble
        if self.learner_name == "reg_ensemble":
            return EnsembleLearner(**self.param_dict)
            
        return None 
開發者ID:ChenglongChen,項目名稱:kaggle-HomeDepot,代碼行數:45,代碼來源:task.py

示例13: getSKLearnModel

# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import BayesianRidge [as 別名]
def getSKLearnModel(modelName):
    if modelName == 'LinearRegression':
        model = linear_model.LinearRegression()
    elif modelName == 'BayesianRidge':
        model = linear_model.BayesianRidge()
    elif modelName == 'ARDRegression':
        model = linear_model.ARDRegression()
    elif modelName == 'ElasticNet':
        model = linear_model.ElasticNet()
    elif modelName == 'HuberRegressor':
        model = linear_model.HuberRegressor()
    elif modelName == 'Lasso':
        model = linear_model.Lasso()
    elif modelName == 'LassoLars':
        model = linear_model.LassoLars()
    elif modelName == 'Rigid':
        model = linear_model.Ridge()
    elif modelName == 'SGDRegressor':
        model = linear_model.SGDRegressor()
    elif modelName == 'SVR':
        model = SVR()
    elif modelName=='MLPClassifier':
        model = MLPClassifier()
    elif modelName=='KNeighborsClassifier':
        model = KNeighborsClassifier()
    elif modelName=='SVC':
        model = SVC()
    elif modelName=='GaussianProcessClassifier':
        model = GaussianProcessClassifier()
    elif modelName=='DecisionTreeClassifier':
        model = DecisionTreeClassifier()
    elif modelName=='RandomForestClassifier':
        model = RandomForestClassifier()
    elif modelName=='AdaBoostClassifier':
        model = AdaBoostClassifier()
    elif modelName=='GaussianNB':
        model = GaussianNB()
    elif modelName=='LogisticRegression':
        model = linear_model.LogisticRegression()
    elif modelName=='QuadraticDiscriminantAnalysis':
        model = QuadraticDiscriminantAnalysis()

    return model 
開發者ID:tech-quantum,項目名稱:sia-cog,代碼行數:45,代碼來源:scikitlearn.py

示例14: lets_try

# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import BayesianRidge [as 別名]
def lets_try(train, labels):
    results = {}

    def test_model(clf):
        cv = KFold(n_splits=5, shuffle=True, random_state=45)
        r2 = make_scorer(r2_score)
        r2_val_score = cross_val_score(clf, train, labels, cv=cv, scoring=r2)
        scores = [r2_val_score.mean()]
        return scores

    clf = linear_model.LinearRegression()
    results["Linear"] = test_model(clf)

    clf = linear_model.Ridge()
    results["Ridge"] = test_model(clf)

    clf = linear_model.BayesianRidge()
    results["Bayesian Ridge"] = test_model(clf)

    clf = linear_model.HuberRegressor()
    results["Hubber"] = test_model(clf)

    clf = linear_model.Lasso(alpha=1e-4)
    results["Lasso"] = test_model(clf)

    clf = BaggingRegressor()
    results["Bagging"] = test_model(clf)

    clf = RandomForestRegressor()
    results["RandomForest"] = test_model(clf)

    clf = AdaBoostRegressor()
    results["AdaBoost"] = test_model(clf)

    clf = svm.SVR()
    results["SVM RBF"] = test_model(clf)

    clf = svm.SVR(kernel="linear")
    results["SVM Linear"] = test_model(clf)

    results = pd.DataFrame.from_dict(results, orient='index')
    results.columns = ["R Square Score"]
    # results = results.sort(columns=["R Square Score"], ascending=False)
    results.plot(kind="bar", title="Model Scores")
    axes = plt.gca()
    axes.set_ylim([0.5, 1])
    return results 
開發者ID:IsaacChanghau,項目名稱:AmusingPythonCodes,代碼行數:49,代碼來源:pca_regression.py

示例15: fit

# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import BayesianRidge [as 別名]
def fit(self, smiles, y=None, *, X_scaler=None, y_scaler=None, **kwargs):
        """
        Default - automatically remove NaN data rows
        
        Parameters
        ----------
        smiles: list[str]
            SMILES for training.
        y: pandas.DataFrame
            Target properties for training.
        X_scaler: Scaler (optional, not implement)
            Scaler for transform X.
        y_scaler: Scaler (optional, not implement)
            Scaler for transform y.
        kwargs: dict
            Parameters pass to BayesianRidge initialization.
        """

        if self._mdl:
            raise RuntimeError('estimators have been set.'
                               'If you want to re-train these estimators,'
                               'please use `remove_estimator()` method first.')

        if not isinstance(y, (pd.DataFrame, pd.Series)):
            raise TypeError('please package all properties into a pd.DataFrame or pd.Series')

        # remove NaN from X
        desc = self._descriptor.transform(smiles, return_type='df').reset_index(drop=True)
        y = y.reset_index(drop=True)
        desc.dropna(inplace=True)
        y = pd.DataFrame(y.loc[desc.index])

        for c in y:
            y_ = y[c]  # get target property.
            # remove NaN from y_
            y_.dropna(inplace=True)
            desc_ = desc.loc[y_.index]
            desc_ = desc_.values

            mdl = BayesianRidge(compute_score=True, **kwargs)
            mdl.fit(desc_, y_)
            self._mdl[c] = mdl

    # log_likelihood returns a dataframe of log-likelihood values of each property & sample 
開發者ID:yoshida-lab,項目名稱:XenonPy,代碼行數:46,代碼來源:estimator.py


注:本文中的sklearn.linear_model.BayesianRidge方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。