當前位置: 首頁>>代碼示例>>Python>>正文


Python kernel_approximation.Nystroem方法代碼示例

本文整理匯總了Python中sklearn.kernel_approximation.Nystroem方法的典型用法代碼示例。如果您正苦於以下問題:Python kernel_approximation.Nystroem方法的具體用法?Python kernel_approximation.Nystroem怎麽用?Python kernel_approximation.Nystroem使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在sklearn.kernel_approximation的用法示例。


在下文中一共展示了kernel_approximation.Nystroem方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_nystroem_default_parameters

# 需要導入模塊: from sklearn import kernel_approximation [as 別名]
# 或者: from sklearn.kernel_approximation import Nystroem [as 別名]
def test_nystroem_default_parameters():
    rnd = np.random.RandomState(42)
    X = rnd.uniform(size=(10, 4))

    # rbf kernel should behave as gamma=None by default
    # aka gamma = 1 / n_features
    nystroem = Nystroem(n_components=10)
    X_transformed = nystroem.fit_transform(X)
    K = rbf_kernel(X, gamma=None)
    K2 = np.dot(X_transformed, X_transformed.T)
    assert_array_almost_equal(K, K2)

    # chi2 kernel should behave as gamma=1 by default
    nystroem = Nystroem(kernel='chi2', n_components=10)
    X_transformed = nystroem.fit_transform(X)
    K = chi2_kernel(X, gamma=1)
    K2 = np.dot(X_transformed, X_transformed.T)
    assert_array_almost_equal(K, K2) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:20,代碼來源:test_kernel_approximation.py

示例2: test_import_from_sklearn_pipeline_feature_union

# 需要導入模塊: from sklearn import kernel_approximation [as 別名]
# 或者: from sklearn.kernel_approximation import Nystroem [as 別名]
def test_import_from_sklearn_pipeline_feature_union(self):
        from sklearn.pipeline import FeatureUnion        
        from sklearn.decomposition import PCA
        from sklearn.kernel_approximation import Nystroem
        from sklearn.neighbors import KNeighborsClassifier
        from sklearn.pipeline import make_pipeline
        union = FeatureUnion([("pca", PCA(n_components=1)), ("nys", Nystroem(n_components=2, random_state=42))])        
        sklearn_pipeline = make_pipeline(union, KNeighborsClassifier())
        lale_pipeline = import_from_sklearn_pipeline(sklearn_pipeline)
        self.assertEqual(len(lale_pipeline.edges()), 3)
        from lale.lib.sklearn.pca import PCAImpl
        from lale.lib.sklearn.nystroem import NystroemImpl
        from lale.lib.lale.concat_features import ConcatFeaturesImpl
        from lale.lib.sklearn.k_neighbors_classifier import KNeighborsClassifierImpl
        self.assertEqual(lale_pipeline.edges()[0][0]._impl_class(), PCAImpl)
        self.assertEqual(lale_pipeline.edges()[0][1]._impl_class(), ConcatFeaturesImpl)
        self.assertEqual(lale_pipeline.edges()[1][0]._impl_class(), NystroemImpl)
        self.assertEqual(lale_pipeline.edges()[1][1]._impl_class(), ConcatFeaturesImpl)
        self.assertEqual(lale_pipeline.edges()[2][0]._impl_class(), ConcatFeaturesImpl)
        self.assertEqual(lale_pipeline.edges()[2][1]._impl_class(), KNeighborsClassifierImpl)
        self.assert_equal_predictions(sklearn_pipeline, lale_pipeline) 
開發者ID:IBM,項目名稱:lale,代碼行數:23,代碼來源:test_core_pipeline.py

示例3: test_export_to_sklearn_pipeline3

# 需要導入模塊: from sklearn import kernel_approximation [as 別名]
# 或者: from sklearn.kernel_approximation import Nystroem [as 別名]
def test_export_to_sklearn_pipeline3(self):
        from lale.lib.lale import ConcatFeatures
        from lale.lib.sklearn import PCA
        from lale.lib.sklearn import KNeighborsClassifier, LogisticRegression, SVC 
        from sklearn.feature_selection import SelectKBest
        from lale.lib.sklearn import Nystroem
        from sklearn.pipeline import FeatureUnion

        lale_pipeline = ((PCA() >> SelectKBest(k=2)) & (Nystroem(random_state = 42) >> SelectKBest(k=3))
         & (SelectKBest(k=3))) >> ConcatFeatures() >> SelectKBest(k=2) >> LogisticRegression()
        trained_lale_pipeline = lale_pipeline.fit(self.X_train, self.y_train)
        sklearn_pipeline = trained_lale_pipeline.export_to_sklearn_pipeline()
        self.assertIsInstance(sklearn_pipeline.named_steps['featureunion'], FeatureUnion)
        self.assertIsInstance(sklearn_pipeline.named_steps['selectkbest'], SelectKBest)
        from sklearn.linear_model import LogisticRegression
        self.assertIsInstance(sklearn_pipeline.named_steps['logisticregression'], LogisticRegression)
        self.assert_equal_predictions(sklearn_pipeline, trained_lale_pipeline) 
開發者ID:IBM,項目名稱:lale,代碼行數:19,代碼來源:test_core_pipeline.py

示例4: test_nystroem_approximation

# 需要導入模塊: from sklearn import kernel_approximation [as 別名]
# 或者: from sklearn.kernel_approximation import Nystroem [as 別名]
def test_nystroem_approximation():
    # some basic tests
    rnd = np.random.RandomState(0)
    X = rnd.uniform(size=(10, 4))

    # With n_components = n_samples this is exact
    X_transformed = Nystroem(n_components=X.shape[0]).fit_transform(X)
    K = rbf_kernel(X)
    assert_array_almost_equal(np.dot(X_transformed, X_transformed.T), K)

    trans = Nystroem(n_components=2, random_state=rnd)
    X_transformed = trans.fit(X).transform(X)
    assert_equal(X_transformed.shape, (X.shape[0], 2))

    # test callable kernel
    def linear_kernel(X, Y):
        return np.dot(X, Y.T)
    trans = Nystroem(n_components=2, kernel=linear_kernel, random_state=rnd)
    X_transformed = trans.fit(X).transform(X)
    assert_equal(X_transformed.shape, (X.shape[0], 2))

    # test that available kernels fit and transform
    kernels_available = kernel_metrics()
    for kern in kernels_available:
        trans = Nystroem(n_components=2, kernel=kern, random_state=rnd)
        X_transformed = trans.fit(X).transform(X)
        assert_equal(X_transformed.shape, (X.shape[0], 2)) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:29,代碼來源:test_kernel_approximation.py

示例5: test_nystroem_singular_kernel

# 需要導入模塊: from sklearn import kernel_approximation [as 別名]
# 或者: from sklearn.kernel_approximation import Nystroem [as 別名]
def test_nystroem_singular_kernel():
    # test that nystroem works with singular kernel matrix
    rng = np.random.RandomState(0)
    X = rng.rand(10, 20)
    X = np.vstack([X] * 2)  # duplicate samples

    gamma = 100
    N = Nystroem(gamma=gamma, n_components=X.shape[0]).fit(X)
    X_transformed = N.transform(X)

    K = rbf_kernel(X, gamma=gamma)

    assert_array_almost_equal(K, np.dot(X_transformed, X_transformed.T))
    assert np.all(np.isfinite(Y)) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:16,代碼來源:test_kernel_approximation.py

示例6: test_nystroem_poly_kernel_params

# 需要導入模塊: from sklearn import kernel_approximation [as 別名]
# 或者: from sklearn.kernel_approximation import Nystroem [as 別名]
def test_nystroem_poly_kernel_params():
    # Non-regression: Nystroem should pass other parameters beside gamma.
    rnd = np.random.RandomState(37)
    X = rnd.uniform(size=(10, 4))

    K = polynomial_kernel(X, degree=3.1, coef0=.1)
    nystroem = Nystroem(kernel="polynomial", n_components=X.shape[0],
                        degree=3.1, coef0=.1)
    X_transformed = nystroem.fit_transform(X)
    assert_array_almost_equal(np.dot(X_transformed, X_transformed.T), K) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:12,代碼來源:test_kernel_approximation.py

示例7: test_nystroem_callable

# 需要導入模塊: from sklearn import kernel_approximation [as 別名]
# 或者: from sklearn.kernel_approximation import Nystroem [as 別名]
def test_nystroem_callable():
    # Test Nystroem on a callable.
    rnd = np.random.RandomState(42)
    n_samples = 10
    X = rnd.uniform(size=(n_samples, 4))

    def logging_histogram_kernel(x, y, log):
        """Histogram kernel that writes to a log."""
        log.append(1)
        return np.minimum(x, y).sum()

    kernel_log = []
    X = list(X)     # test input validation
    Nystroem(kernel=logging_histogram_kernel,
             n_components=(n_samples - 1),
             kernel_params={'log': kernel_log}).fit(X)
    assert_equal(len(kernel_log), n_samples * (n_samples - 1) / 2)

    def linear_kernel(X, Y):
        return np.dot(X, Y.T)

    # if degree, gamma or coef0 is passed, we raise a warning
    msg = "Don't pass gamma, coef0 or degree to Nystroem"
    params = ({'gamma': 1}, {'coef0': 1}, {'degree': 2})
    for param in params:
        ny = Nystroem(kernel=linear_kernel, **param)
        with pytest.raises(ValueError, match=msg):
            ny.fit(X) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:30,代碼來源:test_kernel_approximation.py

示例8: test_comparison_with_scikit

# 需要導入模塊: from sklearn import kernel_approximation [as 別名]
# 或者: from sklearn.kernel_approximation import Nystroem [as 別名]
def test_comparison_with_scikit(self):
        import warnings
        warnings.filterwarnings("ignore")
        from lale.lib.sklearn import PCA
        import sklearn.datasets
        from lale.helpers import cross_val_score
        pca = PCA(n_components=3, random_state=42, svd_solver='arpack')
        nys = Nystroem(n_components=10, random_state=42)
        concat = ConcatFeatures()
        lr = LogisticRegression(random_state=42, C=0.1)
        trainable = (pca & nys) >> concat >> lr
        digits = sklearn.datasets.load_digits()
        X, y = sklearn.utils.shuffle(digits.data, digits.target, random_state=42)

        cv_results = cross_val_score(trainable, X, y)
        cv_results = ['{0:.1%}'.format(score) for score in cv_results]

        from sklearn.pipeline import make_pipeline, FeatureUnion
        from sklearn.decomposition import PCA as SklearnPCA
        from sklearn.kernel_approximation import Nystroem as SklearnNystroem
        from sklearn.linear_model import LogisticRegression as SklearnLR
        from sklearn.model_selection import cross_val_score
        union = FeatureUnion([("pca", SklearnPCA(n_components=3, random_state=42, svd_solver='arpack')),
                            ("nys", SklearnNystroem(n_components=10, random_state=42))])
        lr = SklearnLR(random_state=42, C=0.1)
        pipeline = make_pipeline(union, lr)

        scikit_cv_results = cross_val_score(pipeline, X, y, cv = 5)
        scikit_cv_results = ['{0:.1%}'.format(score) for score in scikit_cv_results]
        self.assertEqual(cv_results, scikit_cv_results)
        warnings.resetwarnings() 
開發者ID:IBM,項目名稱:lale,代碼行數:33,代碼來源:test_core_operators.py

示例9: test_compose3

# 需要導入模塊: from sklearn import kernel_approximation [as 別名]
# 或者: from sklearn.kernel_approximation import Nystroem [as 別名]
def test_compose3(self):
        from lale.operators import make_pipeline
        nys = Nystroem(n_components=15)
        pca = PCA(n_components=10)
        lr = LogisticRegression(random_state=42)
        trainable = nys >> pca >> lr
        digits = sklearn.datasets.load_digits()
        trained = trainable.fit(digits.data, digits.target)
        predicted = trained.predict(digits.data) 
開發者ID:IBM,項目名稱:lale,代碼行數:11,代碼來源:test_core_pipeline.py

示例10: test_pca_nys_lr

# 需要導入模塊: from sklearn import kernel_approximation [as 別名]
# 或者: from sklearn.kernel_approximation import Nystroem [as 別名]
def test_pca_nys_lr(self):
        from lale.operators import make_union
        nys = Nystroem(n_components=15)
        pca = PCA(n_components=10)
        lr = LogisticRegression(random_state=42)
        trainable = make_union(nys, pca) >> lr
        digits = sklearn.datasets.load_digits()
        trained = trainable.fit(digits.data, digits.target)
        predicted = trained.predict(digits.data) 
開發者ID:IBM,項目名稱:lale,代碼行數:11,代碼來源:test_core_pipeline.py

示例11: test_compose4

# 需要導入模塊: from sklearn import kernel_approximation [as 別名]
# 或者: from sklearn.kernel_approximation import Nystroem [as 別名]
def test_compose4(self):
        from lale.operators import make_choice
        digits = sklearn.datasets.load_digits()
        ohe = OneHotEncoder(handle_unknown=OneHotEncoder.handle_unknown.ignore)
        ohe.get_params()
        no_op = NoOp()
        pca = PCA()
        nys = Nystroem()
        lr = LogisticRegression()
        knn = KNeighborsClassifier()
        step1 = ohe | no_op
        step2 = pca | nys
        step3 = lr | knn
        model_plan = step1 >> step2 >> step3
        #TODO: optimize on this plan and then fit and predict 
開發者ID:IBM,項目名稱:lale,代碼行數:17,代碼來源:test_core_pipeline.py

示例12: test_import_from_sklearn_pipeline_nested_pipeline1

# 需要導入模塊: from sklearn import kernel_approximation [as 別名]
# 或者: from sklearn.kernel_approximation import Nystroem [as 別名]
def test_import_from_sklearn_pipeline_nested_pipeline1(self):
        from sklearn.pipeline import FeatureUnion, make_pipeline       
        from sklearn.decomposition import PCA
        from sklearn.kernel_approximation import Nystroem
        from sklearn.feature_selection import SelectKBest
        from sklearn.neighbors import KNeighborsClassifier
        from sklearn.pipeline import make_pipeline
        union = FeatureUnion([("selectkbest_pca", make_pipeline(SelectKBest(k=3), FeatureUnion([('pca', PCA(n_components=1)), ('nested_pipeline', make_pipeline(SelectKBest(k=2), Nystroem()))]))), ("nys", Nystroem(n_components=2, random_state=42))])        
        sklearn_pipeline = make_pipeline(union, KNeighborsClassifier())
        lale_pipeline = import_from_sklearn_pipeline(sklearn_pipeline)
        self.assertEqual(len(lale_pipeline.edges()), 8)
        #These assertions assume topological sort, which may not be unique. So the assertions are brittle.
        from lale.lib.sklearn.pca import PCAImpl
        from lale.lib.sklearn.nystroem import NystroemImpl
        from lale.lib.lale.concat_features import ConcatFeaturesImpl
        from lale.lib.sklearn.k_neighbors_classifier import KNeighborsClassifierImpl
        from lale.lib.sklearn.select_k_best import SelectKBestImpl
        self.assertEqual(lale_pipeline.edges()[0][0]._impl_class(), SelectKBestImpl)
        self.assertEqual(lale_pipeline.edges()[0][1]._impl_class(), PCAImpl)
        self.assertEqual(lale_pipeline.edges()[1][0]._impl_class(), SelectKBestImpl)
        self.assertEqual(lale_pipeline.edges()[1][1]._impl_class(), SelectKBestImpl)
        self.assertEqual(lale_pipeline.edges()[2][0]._impl_class(), SelectKBestImpl)
        self.assertEqual(lale_pipeline.edges()[2][1]._impl_class(), NystroemImpl)
        self.assertEqual(lale_pipeline.edges()[3][0]._impl_class(), PCAImpl)
        self.assertEqual(lale_pipeline.edges()[3][1]._impl_class(), ConcatFeaturesImpl)
        self.assertEqual(lale_pipeline.edges()[4][0]._impl_class(), NystroemImpl)
        self.assertEqual(lale_pipeline.edges()[4][1]._impl_class(), ConcatFeaturesImpl)
        self.assertEqual(lale_pipeline.edges()[5][0]._impl_class(), ConcatFeaturesImpl)
        self.assertEqual(lale_pipeline.edges()[5][1]._impl_class(), ConcatFeaturesImpl)
        self.assertEqual(lale_pipeline.edges()[6][0]._impl_class(), NystroemImpl)
        self.assertEqual(lale_pipeline.edges()[6][1]._impl_class(), ConcatFeaturesImpl)
        self.assertEqual(lale_pipeline.edges()[7][0]._impl_class(), ConcatFeaturesImpl)
        self.assertEqual(lale_pipeline.edges()[7][1]._impl_class(), KNeighborsClassifierImpl)
        self.assert_equal_predictions(sklearn_pipeline, lale_pipeline) 
開發者ID:IBM,項目名稱:lale,代碼行數:36,代碼來源:test_core_pipeline.py

示例13: test_import_from_sklearn_pipeline_nested_pipeline2

# 需要導入模塊: from sklearn import kernel_approximation [as 別名]
# 或者: from sklearn.kernel_approximation import Nystroem [as 別名]
def test_import_from_sklearn_pipeline_nested_pipeline2(self):
        from sklearn.pipeline import FeatureUnion, make_pipeline       
        from sklearn.decomposition import PCA
        from sklearn.kernel_approximation import Nystroem
        from sklearn.feature_selection import SelectKBest
        from sklearn.neighbors import KNeighborsClassifier
        from sklearn.pipeline import make_pipeline
        union = FeatureUnion([("selectkbest_pca", make_pipeline(SelectKBest(k=3), make_pipeline(SelectKBest(k=2), PCA()))), ("nys", Nystroem(n_components=2, random_state=42))])        
        sklearn_pipeline = make_pipeline(union, KNeighborsClassifier())
        lale_pipeline = import_from_sklearn_pipeline(sklearn_pipeline)
        self.assertEqual(len(lale_pipeline.edges()), 5)
        from lale.lib.sklearn.pca import PCAImpl
        from lale.lib.sklearn.nystroem import NystroemImpl
        from lale.lib.lale.concat_features import ConcatFeaturesImpl
        from lale.lib.sklearn.k_neighbors_classifier import KNeighborsClassifierImpl
        from lale.lib.sklearn.select_k_best import SelectKBestImpl
        self.assertEqual(lale_pipeline.edges()[0][0]._impl_class(), SelectKBestImpl)
        self.assertEqual(lale_pipeline.edges()[0][1]._impl_class(), SelectKBestImpl)
        self.assertEqual(lale_pipeline.edges()[1][0]._impl_class(), SelectKBestImpl)
        self.assertEqual(lale_pipeline.edges()[1][1]._impl_class(), PCAImpl)
        self.assertEqual(lale_pipeline.edges()[2][0]._impl_class(), PCAImpl)
        self.assertEqual(lale_pipeline.edges()[2][1]._impl_class(), ConcatFeaturesImpl)
        self.assertEqual(lale_pipeline.edges()[3][0]._impl_class(), NystroemImpl)
        self.assertEqual(lale_pipeline.edges()[3][1]._impl_class(), ConcatFeaturesImpl)
        self.assertEqual(lale_pipeline.edges()[4][0]._impl_class(), ConcatFeaturesImpl)
        self.assertEqual(lale_pipeline.edges()[4][1]._impl_class(), KNeighborsClassifierImpl)

        self.assert_equal_predictions(sklearn_pipeline, lale_pipeline) 
開發者ID:IBM,項目名稱:lale,代碼行數:30,代碼來源:test_core_pipeline.py

示例14: test_export_to_sklearn_pipeline2

# 需要導入模塊: from sklearn import kernel_approximation [as 別名]
# 或者: from sklearn.kernel_approximation import Nystroem [as 別名]
def test_export_to_sklearn_pipeline2(self):
        from lale.lib.lale import ConcatFeatures
        from lale.lib.sklearn import PCA
        from lale.lib.sklearn import KNeighborsClassifier
        from sklearn.feature_selection import SelectKBest
        from lale.lib.sklearn import Nystroem
        from sklearn.pipeline import FeatureUnion

        lale_pipeline = (((PCA(svd_solver='randomized', random_state=42) & SelectKBest(k=3)) >> ConcatFeatures()) & Nystroem(random_state=42)) >> ConcatFeatures() >> KNeighborsClassifier()
        trained_lale_pipeline = lale_pipeline.fit(self.X_train, self.y_train)
        sklearn_pipeline = trained_lale_pipeline.export_to_sklearn_pipeline()
        self.assertIsInstance(sklearn_pipeline.named_steps['featureunion'], FeatureUnion)
        from sklearn.neighbors import KNeighborsClassifier
        self.assertIsInstance(sklearn_pipeline.named_steps['kneighborsclassifier'], KNeighborsClassifier)
        self.assert_equal_predictions(sklearn_pipeline, trained_lale_pipeline) 
開發者ID:IBM,項目名稱:lale,代碼行數:17,代碼來源:test_core_pipeline.py

示例15: test_two_estimators_predict

# 需要導入模塊: from sklearn import kernel_approximation [as 別名]
# 或者: from sklearn.kernel_approximation import Nystroem [as 別名]
def test_two_estimators_predict(self):
        pipeline = StandardScaler()  >> ( PCA() & Nystroem() & LogisticRegression() )>>ConcatFeatures() >> NoOp() >> LogisticRegression()
        trained = pipeline.fit(self.X_train, self.y_train)
        trained.predict(self.X_test) 
開發者ID:IBM,項目名稱:lale,代碼行數:6,代碼來源:test_core_pipeline.py


注:本文中的sklearn.kernel_approximation.Nystroem方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。