本文整理匯總了Python中sklearn.isotonic.IsotonicRegression方法的典型用法代碼示例。如果您正苦於以下問題:Python isotonic.IsotonicRegression方法的具體用法?Python isotonic.IsotonicRegression怎麽用?Python isotonic.IsotonicRegression使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類sklearn.isotonic
的用法示例。
在下文中一共展示了isotonic.IsotonicRegression方法的9個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_IsotonicRegression
# 需要導入模塊: from sklearn import isotonic [as 別名]
# 或者: from sklearn.isotonic import IsotonicRegression [as 別名]
def test_IsotonicRegression(self):
# disable at this moment
return
"""
data = np.abs(np.random.randn(100))
data = data.cumsum()
df = pdml.ModelFrame(np.arange(len(data)), target=data)
mod1 = df.isotonic.IsotonicRegression()
mod2 = isotonic.IsotonicRegression()
# df.fit(mod1)
# mod2.fit(iris.data)
# result = df.predict(mod1)
# expected = mod2.predict(iris.data)
# self.assertIsInstance(result, pdml.ModelSeries)
# self.assert_numpy_array_almost_equal(result.values, expected)
"""
示例2: _build_harmonized_model
# 需要導入模塊: from sklearn import isotonic [as 別名]
# 或者: from sklearn.isotonic import IsotonicRegression [as 別名]
def _build_harmonized_model(self):
x = self.bins
y = self.experimental
_x = x[~np.isnan(y)]
_y = y[~np.isnan(y)]
regr = IsotonicRegression(increasing=True).fit(_x, _y)
# create the model function
def harmonize(x):
"""Monotonized Variogram
Return the isotonic harmonized experimental variogram.
This means, the experimental variogram is monotonic after harmonization.
The harmonization is done using following Hinterding (2003) using
the PAVA algorithm (Barlow and Bartholomew, 1972).
Returns
-------
gamma : numpy.ndarray
monotonized experimental variogram
References
----------
Barlow, R., D. Bartholomew, et al. (1972): Statistical Interference Under Order Restrictions.
John Wiley and Sons, New York.
Hiterding, A. (2003): Entwicklung hybrider Interpolationsverfahren für den automatisierten Betrieb am
Beispiel meteorologischer Größen. Dissertation, Institut für Geoinformatik, Westphälische
Wilhelms-Universität Münster, IfGIprints, Münster. ISBN: 3-936616-12-4
"""
if isinstance(x, (list, tuple, np.ndarray)):
return regr.transform(x)
else:
return regr.transform([x])
return harmonize
示例3: test_objectmapper
# 需要導入模塊: from sklearn import isotonic [as 別名]
# 或者: from sklearn.isotonic import IsotonicRegression [as 別名]
def test_objectmapper(self):
df = pdml.ModelFrame([])
self.assertIs(df.isotonic.IsotonicRegression, isotonic.IsotonicRegression)
示例4: __init__
# 需要導入模塊: from sklearn import isotonic [as 別名]
# 或者: from sklearn.isotonic import IsotonicRegression [as 別名]
def __init__(self):
self.clf = IsotonicRegression(y_min=0.0, y_max=1.0,
out_of_bounds='clip')
示例5: calibrate_after_treatment_speed_model
# 需要導入模塊: from sklearn import isotonic [as 別名]
# 或者: from sklearn.isotonic import IsotonicRegression [as 別名]
def calibrate_after_treatment_speed_model(
times, after_treatment_warm_up_phases, after_treatment_speeds_delta,
is_hybrid=False):
"""
Calibrates the engine after treatment speed model.
:param times:
Time vector [s].
:type times: numpy.array
:param after_treatment_warm_up_phases:
Phases when engine speed is affected by the after treatment warm up [-].
:type after_treatment_warm_up_phases: numpy.array
:param after_treatment_speeds_delta:
Engine speed delta due to the after treatment warm up [RPM].
:type after_treatment_speeds_delta: numpy.array
:param is_hybrid:
Is the vehicle hybrid?
:type is_hybrid: bool
:return:
After treatment speed model.
:rtype: function
"""
if after_treatment_warm_up_phases.any():
from sklearn.isotonic import IsotonicRegression
x, y, model = [], [], IsotonicRegression(increasing=False)
for i, j in co2_utl.index_phases(after_treatment_warm_up_phases):
x.extend(times[i:j + 1] - (times[i] if is_hybrid else 0.0))
y.extend(after_treatment_speeds_delta[i:j + 1])
# noinspection PyUnresolvedReferences
return model.fit(x, y).predict
示例6: calibrate_after_treatment_power_model
# 需要導入模塊: from sklearn import isotonic [as 別名]
# 或者: from sklearn.isotonic import IsotonicRegression [as 別名]
def calibrate_after_treatment_power_model(
times, after_treatment_warm_up_phases, engine_powers_out,
is_hybrid=False):
"""
Calibrates the engine after treatment speed model.
:param times:
Time vector [s].
:type times: numpy.array
:param after_treatment_warm_up_phases:
Phases when engine speed is affected by the after treatment warm up [-].
:type after_treatment_warm_up_phases: numpy.array
:param engine_powers_out:
Engine power vector [kW].
:type engine_powers_out: numpy.array
:param is_hybrid:
Is the vehicle hybrid?
:type is_hybrid: bool
:return:
After treatment speed model.
:rtype: function
"""
if after_treatment_warm_up_phases.any():
from sklearn.isotonic import IsotonicRegression
x, y = [], []
for i, j in co2_utl.index_phases(after_treatment_warm_up_phases):
t = times[i:j + 1] - (times[i] if is_hybrid else 0.0)
x.extend(t)
y.extend(co2_utl.median_filter(t, engine_powers_out[i:j + 1], 4))
# noinspection PyUnresolvedReferences
return IsotonicRegression().fit(x, np.maximum(0, y)).predict
示例7: _gspv_interpolate_cloud
# 需要導入模塊: from sklearn import isotonic [as 別名]
# 或者: from sklearn.isotonic import IsotonicRegression [as 別名]
def _gspv_interpolate_cloud(powers, velocities):
from sklearn.isotonic import IsotonicRegression
from scipy.interpolate import InterpolatedUnivariateSpline
regressor = IsotonicRegression()
regressor.fit(powers, velocities)
x = np.linspace(min(powers), max(powers))
y = regressor.predict(x)
return InterpolatedUnivariateSpline(x, y, k=1, ext=3)
# noinspection PyMissingOrEmptyDocstring,PyPep8Naming
示例8: fit
# 需要導入模塊: from sklearn import isotonic [as 別名]
# 或者: from sklearn.isotonic import IsotonicRegression [as 別名]
def fit(self, T, y, sample_weight=None):
"""Fit using `T`, `y` as training data.
Parameters
----------
* `T` [array-like, shape=(n_samples,)]:
Training data.
* `y` [array-like, shape=(n_samples,)]:
Training target.
* `sample_weight` [array-like, shape=(n_samples,), optional]:
Weights. If set to None, all weights will be set to 1.
Returns
-------
* `self` [object]:
`self`.
Notes
-----
`T` is stored for future use, as `predict` needs T to interpolate
new input data.
"""
# Check input
T = column_or_1d(T)
# Fit isotonic regression
self.ir_ = IsotonicRegression(y_min=self.y_min,
y_max=self.y_max,
increasing=self.increasing,
out_of_bounds="clip")
self.ir_.fit(T, y, sample_weight=sample_weight)
# Interpolators
if self.interpolation:
p = self.ir_.transform(T)
change_mask1 = (p - np.roll(p, 1)) > 0
change_mask2 = np.roll(change_mask1, -1)
change_mask1[0] = True
change_mask1[-1] = True
change_mask2[0] = True
change_mask2[-1] = True
self.interp1_ = interp1d(T[change_mask1], p[change_mask1],
bounds_error=False,
fill_value=(0., 1.))
self.interp2_ = interp1d(T[change_mask2], p[change_mask2],
bounds_error=False,
fill_value=(0., 1.))
return self
示例9: isotonic_calibration_learner
# 需要導入模塊: from sklearn import isotonic [as 別名]
# 或者: from sklearn.isotonic import IsotonicRegression [as 別名]
def isotonic_calibration_learner(df: pd.DataFrame,
target_column: str = "target",
prediction_column: str = "prediction",
output_column: str = "calibrated_prediction",
y_min: float = 0.0,
y_max: float = 1.0) -> LearnerReturnType:
"""
Fits a single feature isotonic regression to the dataset.
Parameters
----------
df : pandas.DataFrame
A Pandas' DataFrame with features and target columns.
The model will be trained to predict the target column
from the features.
target_column : str
The name of the column in `df` that should be used as target for the model.
This column should be binary, since this is a classification model.
prediction_column : str
The name of the column with the uncalibrated predictions from the model.
output_column : str
The name of the column with the calibrated predictions from the model.
y_min: float
Lower bound of Isotonic Regression
y_max: float
Upper bound of Isotonic Regression
"""
clf = IsotonicRegression(y_min=y_min, y_max=y_max, out_of_bounds='clip')
clf.fit(df[prediction_column], df[target_column])
def p(new_df: pd.DataFrame) -> pd.DataFrame:
return new_df.assign(**{output_column: clf.predict(new_df[prediction_column])})
p.__doc__ = learner_pred_fn_docstring("isotonic_calibration_learner")
log = {'isotonic_calibration_learner': {
'output_column': output_column,
'target_column': target_column,
'prediction_column': prediction_column,
'package': "sklearn",
'package_version': sklearn.__version__,
'training_samples': len(df)},
'object': clf}
return p, p(df), log