本文整理匯總了Python中sklearn.gaussian_process.GaussianProcessClassifier方法的典型用法代碼示例。如果您正苦於以下問題:Python gaussian_process.GaussianProcessClassifier方法的具體用法?Python gaussian_process.GaussianProcessClassifier怎麽用?Python gaussian_process.GaussianProcessClassifier使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類sklearn.gaussian_process
的用法示例。
在下文中一共展示了gaussian_process.GaussianProcessClassifier方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_custom_optimizer
# 需要導入模塊: from sklearn import gaussian_process [as 別名]
# 或者: from sklearn.gaussian_process import GaussianProcessClassifier [as 別名]
def test_custom_optimizer(kernel):
# Test that GPC can use externally defined optimizers.
# Define a dummy optimizer that simply tests 50 random hyperparameters
def optimizer(obj_func, initial_theta, bounds):
rng = np.random.RandomState(0)
theta_opt, func_min = \
initial_theta, obj_func(initial_theta, eval_gradient=False)
for _ in range(50):
theta = np.atleast_1d(rng.uniform(np.maximum(-2, bounds[:, 0]),
np.minimum(1, bounds[:, 1])))
f = obj_func(theta, eval_gradient=False)
if f < func_min:
theta_opt, func_min = theta, f
return theta_opt, func_min
gpc = GaussianProcessClassifier(kernel=kernel, optimizer=optimizer)
gpc.fit(X, y_mc)
# Checks that optimizer improved marginal likelihood
assert_greater(gpc.log_marginal_likelihood(gpc.kernel_.theta),
gpc.log_marginal_likelihood(kernel.theta))
示例2: getModels
# 需要導入模塊: from sklearn import gaussian_process [as 別名]
# 或者: from sklearn.gaussian_process import GaussianProcessClassifier [as 別名]
def getModels():
result = []
result.append("LinearRegression")
result.append("BayesianRidge")
result.append("ARDRegression")
result.append("ElasticNet")
result.append("HuberRegressor")
result.append("Lasso")
result.append("LassoLars")
result.append("Rigid")
result.append("SGDRegressor")
result.append("SVR")
result.append("MLPClassifier")
result.append("KNeighborsClassifier")
result.append("SVC")
result.append("GaussianProcessClassifier")
result.append("DecisionTreeClassifier")
result.append("RandomForestClassifier")
result.append("AdaBoostClassifier")
result.append("GaussianNB")
result.append("LogisticRegression")
result.append("QuadraticDiscriminantAnalysis")
return result
示例3: test_objectmapper
# 需要導入模塊: from sklearn import gaussian_process [as 別名]
# 或者: from sklearn.gaussian_process import GaussianProcessClassifier [as 別名]
def test_objectmapper(self):
df = pdml.ModelFrame([])
dgp = df.gaussian_process
self.assertIs(dgp.GaussianProcessClassifier,
gp.GaussianProcessClassifier)
self.assertIs(dgp.GaussianProcessRegressor,
gp.GaussianProcessRegressor)
self.assertIs(dgp.correlation_models.absolute_exponential,
gp.correlation_models.absolute_exponential)
self.assertIs(dgp.correlation_models.squared_exponential,
gp.correlation_models.squared_exponential)
self.assertIs(dgp.correlation_models.generalized_exponential,
gp.correlation_models.generalized_exponential)
self.assertIs(dgp.correlation_models.pure_nugget,
gp.correlation_models.pure_nugget)
self.assertIs(dgp.correlation_models.cubic,
gp.correlation_models.cubic)
self.assertIs(dgp.correlation_models.linear,
gp.correlation_models.linear)
示例4: test_custom_optimizer
# 需要導入模塊: from sklearn import gaussian_process [as 別名]
# 或者: from sklearn.gaussian_process import GaussianProcessClassifier [as 別名]
def test_custom_optimizer():
# Test that GPC can use externally defined optimizers.
# Define a dummy optimizer that simply tests 50 random hyperparameters
def optimizer(obj_func, initial_theta, bounds):
rng = np.random.RandomState(0)
theta_opt, func_min = \
initial_theta, obj_func(initial_theta, eval_gradient=False)
for _ in range(50):
theta = np.atleast_1d(rng.uniform(np.maximum(-2, bounds[:, 0]),
np.minimum(1, bounds[:, 1])))
f = obj_func(theta, eval_gradient=False)
if f < func_min:
theta_opt, func_min = theta, f
return theta_opt, func_min
for kernel in kernels:
if kernel == fixed_kernel:
continue
gpc = GaussianProcessClassifier(kernel=kernel, optimizer=optimizer)
gpc.fit(X, y_mc)
# Checks that optimizer improved marginal likelihood
assert_greater(gpc.log_marginal_likelihood(gpc.kernel_.theta),
gpc.log_marginal_likelihood(kernel.theta))
示例5: __init__
# 需要導入模塊: from sklearn import gaussian_process [as 別名]
# 或者: from sklearn.gaussian_process import GaussianProcessClassifier [as 別名]
def __init__(self, **kwargs):
super(GaussianProcess, self).__init__()
super(GaussianProcess, self).SetModel(GaussianProcessClassifier(
random_state=RANDOM_SEED[CLASSIFIER_GP], **kwargs))
示例6: test_predict_consistent
# 需要導入模塊: from sklearn import gaussian_process [as 別名]
# 或者: from sklearn.gaussian_process import GaussianProcessClassifier [as 別名]
def test_predict_consistent(kernel):
# Check binary predict decision has also predicted probability above 0.5.
gpc = GaussianProcessClassifier(kernel=kernel).fit(X, y)
assert_array_equal(gpc.predict(X),
gpc.predict_proba(X)[:, 1] >= 0.5)
示例7: test_lml_improving
# 需要導入模塊: from sklearn import gaussian_process [as 別名]
# 或者: from sklearn.gaussian_process import GaussianProcessClassifier [as 別名]
def test_lml_improving(kernel):
# Test that hyperparameter-tuning improves log-marginal likelihood.
gpc = GaussianProcessClassifier(kernel=kernel).fit(X, y)
assert_greater(gpc.log_marginal_likelihood(gpc.kernel_.theta),
gpc.log_marginal_likelihood(kernel.theta))
示例8: test_lml_precomputed
# 需要導入模塊: from sklearn import gaussian_process [as 別名]
# 或者: from sklearn.gaussian_process import GaussianProcessClassifier [as 別名]
def test_lml_precomputed(kernel):
# Test that lml of optimized kernel is stored correctly.
gpc = GaussianProcessClassifier(kernel=kernel).fit(X, y)
assert_almost_equal(gpc.log_marginal_likelihood(gpc.kernel_.theta),
gpc.log_marginal_likelihood(), 7)
示例9: test_converged_to_local_maximum
# 需要導入模塊: from sklearn import gaussian_process [as 別名]
# 或者: from sklearn.gaussian_process import GaussianProcessClassifier [as 別名]
def test_converged_to_local_maximum(kernel):
# Test that we are in local maximum after hyperparameter-optimization.
gpc = GaussianProcessClassifier(kernel=kernel).fit(X, y)
lml, lml_gradient = \
gpc.log_marginal_likelihood(gpc.kernel_.theta, True)
assert np.all((np.abs(lml_gradient) < 1e-4) |
(gpc.kernel_.theta == gpc.kernel_.bounds[:, 0]) |
(gpc.kernel_.theta == gpc.kernel_.bounds[:, 1]))
示例10: test_lml_gradient
# 需要導入模塊: from sklearn import gaussian_process [as 別名]
# 或者: from sklearn.gaussian_process import GaussianProcessClassifier [as 別名]
def test_lml_gradient(kernel):
# Compare analytic and numeric gradient of log marginal likelihood.
gpc = GaussianProcessClassifier(kernel=kernel).fit(X, y)
lml, lml_gradient = gpc.log_marginal_likelihood(kernel.theta, True)
lml_gradient_approx = \
approx_fprime(kernel.theta,
lambda theta: gpc.log_marginal_likelihood(theta,
False),
1e-10)
assert_almost_equal(lml_gradient, lml_gradient_approx, 3)
示例11: test_multi_class
# 需要導入模塊: from sklearn import gaussian_process [as 別名]
# 或者: from sklearn.gaussian_process import GaussianProcessClassifier [as 別名]
def test_multi_class(kernel):
# Test GPC for multi-class classification problems.
gpc = GaussianProcessClassifier(kernel=kernel)
gpc.fit(X, y_mc)
y_prob = gpc.predict_proba(X2)
assert_almost_equal(y_prob.sum(1), 1)
y_pred = gpc.predict(X2)
assert_array_equal(np.argmax(y_prob, 1), y_pred)
示例12: test_multi_class_n_jobs
# 需要導入模塊: from sklearn import gaussian_process [as 別名]
# 或者: from sklearn.gaussian_process import GaussianProcessClassifier [as 別名]
def test_multi_class_n_jobs(kernel):
# Test that multi-class GPC produces identical results with n_jobs>1.
gpc = GaussianProcessClassifier(kernel=kernel)
gpc.fit(X, y_mc)
gpc_2 = GaussianProcessClassifier(kernel=kernel, n_jobs=2)
gpc_2.fit(X, y_mc)
y_prob = gpc.predict_proba(X2)
y_prob_2 = gpc_2.predict_proba(X2)
assert_almost_equal(y_prob, y_prob_2)
示例13: test_sklearn_49
# 需要導入模塊: from sklearn import gaussian_process [as 別名]
# 或者: from sklearn.gaussian_process import GaussianProcessClassifier [as 別名]
def test_sklearn_49(self):
iris = datasets.load_iris()
irisd = pd.DataFrame(iris.data, columns=iris.feature_names)
irisd['Species'] = iris.target
target = 'Species'
features = irisd.columns.drop('Species')
f_name = "gpc.pmml"
model = GaussianProcessClassifier()
pipeline_obj = Pipeline([
('model', model)
])
pipeline_obj.fit(irisd[features], irisd[target])
with self.assertRaises(NotImplementedError):
skl_to_pmml(pipeline_obj, numpy.array(features), target, f_name)
示例14: test_sklearn_50
# 需要導入模塊: from sklearn import gaussian_process [as 別名]
# 或者: from sklearn.gaussian_process import GaussianProcessClassifier [as 別名]
def test_sklearn_50(self):
iris = datasets.load_iris()
irisd = pd.DataFrame(iris.data, columns=iris.feature_names)
irisd['Species'] = iris.target
target = 'Species'
features = irisd.columns.drop('Species')
f_name = "no_pipeline.pmml"
model = GaussianProcessClassifier()
model.fit(irisd[features], irisd[target])
with self.assertRaises(TypeError):
skl_to_pmml(model, features, target, f_name)
示例15: test_objectmapper_abbr
# 需要導入模塊: from sklearn import gaussian_process [as 別名]
# 或者: from sklearn.gaussian_process import GaussianProcessClassifier [as 別名]
def test_objectmapper_abbr(self):
df = pdml.ModelFrame([])
dgp = df.gp
self.assertIs(dgp.GaussianProcessClassifier,
gp.GaussianProcessClassifier)
self.assertIs(dgp.GaussianProcessRegressor,
gp.GaussianProcessRegressor)