本文整理匯總了Python中sklearn.gaussian_process.GaussianProcess方法的典型用法代碼示例。如果您正苦於以下問題:Python gaussian_process.GaussianProcess方法的具體用法?Python gaussian_process.GaussianProcess怎麽用?Python gaussian_process.GaussianProcess使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類sklearn.gaussian_process
的用法示例。
在下文中一共展示了gaussian_process.GaussianProcess方法的12個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: gbc_gp_predict_part
# 需要導入模塊: from sklearn import gaussian_process [as 別名]
# 或者: from sklearn.gaussian_process import GaussianProcess [as 別名]
def gbc_gp_predict_part(sub_x_Train, train_y, sub_x_Test_part):
#Owing to out of memory, the model was trained by part of training data
#Attention, this part was trained on the ram of more than 96G
sub_x_Train[:,16] = np.log(1-sub_x_Train[:,16])
scaler = pp.StandardScaler()
scaler.fit(sub_x_Train)
sub_x_Train = scaler.transform(sub_x_Train)
ind_train = np.where(train_y>0)[0]
part_size= int(0.7 * len(ind_train))
gp = GaussianProcess(theta0=1e-3, thetaL=1e-5, thetaU=10, corr= 'absolute_exponential')
gp.fit(sub_x_Train[ind_train[:part_size]], np.log(train_y[ind_train[:part_size]]))
flag = (sub_x_Test_part[:,16] >= 1)
ind_tmp0 = np.where(flag)[0]
ind_tmp = np.where(~flag)[0]
sub_x_Test_part[ind_tmp,16] = np.log(1-sub_x_Test_part[ind_tmp,16])
sub_x_Test_part[ind_tmp] = scaler.transform(sub_x_Test_part[ind_tmp])
gp_preds_tmp = gp_predict(gp, sub_x_Test_part[ind_tmp])
gp_preds = np.zeros(len(sub_x_Test_part))
gp_preds[ind_tmp] = gp_preds_tmp
return gp_preds
# use gbm classifier to predict whether the loan defaults or not, then invoke the function gbc_gp_predict_part
示例2: test_2d_2d
# 需要導入模塊: from sklearn import gaussian_process [as 別名]
# 或者: from sklearn.gaussian_process import GaussianProcess [as 別名]
def test_2d_2d(regr=regression.constant, corr=correlation.squared_exponential,
random_start=10, beta0=None):
# MLE estimation of a two-dimensional Gaussian Process model accounting for
# anisotropy. Check random start optimization.
# Test the GP interpolation for 2D output
b, kappa, e = 5., .5, .1
g = lambda x: b - x[:, 1] - kappa * (x[:, 0] - e) ** 2.
f = lambda x: np.vstack((g(x), g(x))).T
X = np.array([[-4.61611719, -6.00099547],
[4.10469096, 5.32782448],
[0.00000000, -0.50000000],
[-6.17289014, -4.6984743],
[1.3109306, -6.93271427],
[-5.03823144, 3.10584743],
[-2.87600388, 6.74310541],
[5.21301203, 4.26386883]])
y = f(X)
gp = GaussianProcess(regr=regr, corr=corr, beta0=beta0,
theta0=[1e-2] * 2, thetaL=[1e-4] * 2,
thetaU=[1e-1] * 2,
random_start=random_start, verbose=False)
gp.fit(X, y)
y_pred, MSE = gp.predict(X, eval_MSE=True)
assert_true(np.allclose(y_pred, y) and np.allclose(MSE, 0.))
示例3: test_random_starts
# 需要導入模塊: from sklearn import gaussian_process [as 別名]
# 或者: from sklearn.gaussian_process import GaussianProcess [as 別名]
def test_random_starts():
# Test that an increasing number of random-starts of GP fitting only
# increases the reduced likelihood function of the optimal theta.
n_samples, n_features = 50, 3
rng = np.random.RandomState(0)
X = rng.randn(n_samples, n_features) * 2 - 1
y = np.sin(X).sum(axis=1) + np.sin(3 * X).sum(axis=1)
best_likelihood = -np.inf
for random_start in range(1, 5):
gp = GaussianProcess(regr="constant", corr="squared_exponential",
theta0=[1e-0] * n_features,
thetaL=[1e-4] * n_features,
thetaU=[1e+1] * n_features,
random_start=random_start, random_state=0,
verbose=False).fit(X, y)
rlf = gp.reduced_likelihood_function()[0]
assert_greater(rlf, best_likelihood - np.finfo(np.float32).eps)
best_likelihood = rlf
示例4: gaussProcPred
# 需要導入模塊: from sklearn import gaussian_process [as 別名]
# 或者: from sklearn.gaussian_process import GaussianProcess [as 別名]
def gaussProcPred(xTrain,yTrain,xTest,covar):
xTrainAlter = []
for i in range(1,len(xTrain)):
tvec = xTrain[i-1]+xTrain[i]
xTrainAlter.append(tvec)
xTestAlter = []
xTestAlter.append(xTrain[len(xTrain)-1]+xTest[0])
for i in range(1,len(xTest)):
tvec = xTest[i-1]+xTest[i]
xTestAlter.append(tvec)
clfr = gaussian_process.GaussianProcess(theta0=1e-2,
thetaL=1e-4, thetaU=1e-1, corr=covar)
clfr.fit(xTrainAlter,yTrain[1:])
return clfr.predict(xTestAlter, eval_MSE=True)[0]
示例5: __init__
# 需要導入模塊: from sklearn import gaussian_process [as 別名]
# 或者: from sklearn.gaussian_process import GaussianProcess [as 別名]
def __init__( self, n_outputs, regr='constant', corr='squared_exponential',
storage_mode='full', verbose=False, theta0=1e-1 ):
self.gps = [ gaussian_process.GaussianProcess( regr=regr, corr=corr,
storage_mode=storage_mode, verbose=verbose, theta0=theta0 ) for i in range( n_outputs ) ]
示例6: __init__
# 需要導入模塊: from sklearn import gaussian_process [as 別名]
# 或者: from sklearn.gaussian_process import GaussianProcess [as 別名]
def __init__(self, f, pbounds):
"""
參數:
f: 需要最大化的函數,black-box
pbounds: 字典,key為參數名稱,value為最大最小值的tuple
"""
self.pbounds = pbounds
self.keys = list(pbounds.keys())
self.dim = len(pbounds)
self.bounds = []
for key in self.pbounds.keys():
self.bounds.append(self.pbounds[key])
self.bounds = np.asarray(self.bounds)
self.f = f
self.initialized = False
self.init_points = []
self.x_init = []
self.y_init = []
self.X = None
self.Y = None
# 迭代次數i
self.i = 0
# scikit-learn中的GaussianProcess
self.gp = GaussianProcess(corr=matern52,
theta0=np.random.uniform(0.001, 0.05, self.dim),
thetaL=1e-5 * np.ones(self.dim),
thetaU=1e0 * np.ones(self.dim),
random_start=30)
# Utility喊出
self.util = None
# 輸出字典
self.res = dict()
self.res['max'] = {'max_val': None,
'max_params': None}
self.res['all'] = {'values': [], 'params': []}
示例7: __init__
# 需要導入模塊: from sklearn import gaussian_process [as 別名]
# 或者: from sklearn.gaussian_process import GaussianProcess [as 別名]
def __init__(self, isTrain):
super(RegressionGaussianProcess, self).__init__(isTrain)
# data preprocessing
#self.dataPreprocessing()
# Create Gaussian process object
self.gp = gaussian_process.GaussianProcess(theta0=1e-2, thetaL=1e-4, thetaU=1e-1)
示例8: test_1d
# 需要導入模塊: from sklearn import gaussian_process [as 別名]
# 或者: from sklearn.gaussian_process import GaussianProcess [as 別名]
def test_1d(regr=regression.constant, corr=correlation.squared_exponential,
random_start=10, beta0=None):
# MLE estimation of a one-dimensional Gaussian Process model.
# Check random start optimization.
# Test the interpolating property.
gp = GaussianProcess(regr=regr, corr=corr, beta0=beta0,
theta0=1e-2, thetaL=1e-4, thetaU=1e-1,
random_start=random_start, verbose=False).fit(X, y)
y_pred, MSE = gp.predict(X, eval_MSE=True)
y2_pred, MSE2 = gp.predict(X2, eval_MSE=True)
assert_true(np.allclose(y_pred, y) and np.allclose(MSE, 0.)
and np.allclose(MSE2, 0., atol=10))
示例9: test_2d
# 需要導入模塊: from sklearn import gaussian_process [as 別名]
# 或者: from sklearn.gaussian_process import GaussianProcess [as 別名]
def test_2d(regr=regression.constant, corr=correlation.squared_exponential,
random_start=10, beta0=None):
# MLE estimation of a two-dimensional Gaussian Process model accounting for
# anisotropy. Check random start optimization.
# Test the interpolating property.
b, kappa, e = 5., .5, .1
g = lambda x: b - x[:, 1] - kappa * (x[:, 0] - e) ** 2.
X = np.array([[-4.61611719, -6.00099547],
[4.10469096, 5.32782448],
[0.00000000, -0.50000000],
[-6.17289014, -4.6984743],
[1.3109306, -6.93271427],
[-5.03823144, 3.10584743],
[-2.87600388, 6.74310541],
[5.21301203, 4.26386883]])
y = g(X).ravel()
thetaL = [1e-4] * 2
thetaU = [1e-1] * 2
gp = GaussianProcess(regr=regr, corr=corr, beta0=beta0,
theta0=[1e-2] * 2, thetaL=thetaL,
thetaU=thetaU,
random_start=random_start, verbose=False)
gp.fit(X, y)
y_pred, MSE = gp.predict(X, eval_MSE=True)
assert_true(np.allclose(y_pred, y) and np.allclose(MSE, 0.))
eps = np.finfo(gp.theta_.dtype).eps
assert_true(np.all(gp.theta_ >= thetaL - eps)) # Lower bounds of hyperparameters
assert_true(np.all(gp.theta_ <= thetaU + eps)) # Upper bounds of hyperparameters
示例10: test_wrong_number_of_outputs
# 需要導入模塊: from sklearn import gaussian_process [as 別名]
# 或者: from sklearn.gaussian_process import GaussianProcess [as 別名]
def test_wrong_number_of_outputs():
gp = GaussianProcess()
gp.fit([[1, 2, 3], [4, 5, 6]], [1, 2, 3])
示例11: test_no_normalize
# 需要導入模塊: from sklearn import gaussian_process [as 別名]
# 或者: from sklearn.gaussian_process import GaussianProcess [as 別名]
def test_no_normalize():
gp = GaussianProcess(normalize=False).fit(X, y)
y_pred = gp.predict(X)
assert_true(np.allclose(y_pred, y))
示例12: test_mse_solving
# 需要導入模塊: from sklearn import gaussian_process [as 別名]
# 或者: from sklearn.gaussian_process import GaussianProcess [as 別名]
def test_mse_solving():
# test the MSE estimate to be sane.
# non-regression test for ignoring off-diagonals of feature covariance,
# testing with nugget that renders covariance useless, only
# using the mean function, with low effective rank of data
gp = GaussianProcess(corr='absolute_exponential', theta0=1e-4,
thetaL=1e-12, thetaU=1e-2, nugget=1e-2,
optimizer='Welch', regr="linear", random_state=0)
X, y = make_regression(n_informative=3, n_features=60, noise=50,
random_state=0, effective_rank=1)
gp.fit(X, y)
assert_greater(1000, gp.predict(X, eval_MSE=True)[1].mean())