當前位置: 首頁>>代碼示例>>Python>>正文


Python sklearn.feature_selection方法代碼示例

本文整理匯總了Python中sklearn.feature_selection方法的典型用法代碼示例。如果您正苦於以下問題:Python sklearn.feature_selection方法的具體用法?Python sklearn.feature_selection怎麽用?Python sklearn.feature_selection使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在sklearn的用法示例。


在下文中一共展示了sklearn.feature_selection方法的5個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_clone

# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import feature_selection [as 別名]
def test_clone():
    # Tests that clone creates a correct deep copy.
    # We create an estimator, make a copy of its original state
    # (which, in this case, is the current state of the estimator),
    # and check that the obtained copy is a correct deep copy.

    from sklearn.feature_selection import SelectFpr, f_classif

    selector = SelectFpr(f_classif, alpha=0.1)
    new_selector = clone(selector)
    assert selector is not new_selector
    assert_equal(selector.get_params(), new_selector.get_params())

    selector = SelectFpr(f_classif, alpha=np.zeros((10, 2)))
    new_selector = clone(selector)
    assert selector is not new_selector 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:18,代碼來源:test_base.py

示例2: featuresFromFeatureSelection

# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import feature_selection [as 別名]
def featuresFromFeatureSelection(X,Y,columnNames):
    
    for f in columnNames:
        print(f)
    X_new_withfitTransform = SelectKBest(chi2, k=34).fit(X, Y)
    colors = getColorNames()
    counter  = 0
    
    scores = X_new_withfitTransform.scores_
    scores_scaled = np.divide(scores, 1000) 
        
    for score in scores_scaled:
        #if(score > 10):
        #print('Feature {:>34}'.format(columnNames[counter]))
        print('{:>34}  '.format( score))
        '''Plot a graph'''    
        plt.bar(counter, score,color=colors[counter])
        counter +=1 

    plt.ylabel('Scores(1k)')
    plt.title('Scores calculated by Chi-Square Test')
    plt.legend(columnNames, bbox_to_anchor=(0., 0.8, 1., .102), loc=3,ncol=5, mode="expand", borderaxespad=0.)
    plt.show()
    
    #print(feature_selection.chi2(X,Y)) 
開發者ID:md-k-sarker,項目名稱:Predicting-Health-Insurance-Cost,代碼行數:27,代碼來源:DataAnalysis.py

示例3: test_clone

# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import feature_selection [as 別名]
def test_clone():
    # Tests that clone creates a correct deep copy.
    # We create an estimator, make a copy of its original state
    # (which, in this case, is the current state of the estimator),
    # and check that the obtained copy is a correct deep copy.

    from sklearn.feature_selection import SelectFpr, f_classif

    selector = SelectFpr(f_classif, alpha=0.1)
    new_selector = clone(selector)
    assert_true(selector is not new_selector)
    assert_equal(selector.get_params(), new_selector.get_params())

    selector = SelectFpr(f_classif, alpha=np.zeros((10, 2)))
    new_selector = clone(selector)
    assert_true(selector is not new_selector) 
開發者ID:alvarobartt,項目名稱:twitter-stock-recommendation,代碼行數:18,代碼來源:test_base.py

示例4: test_clone_2

# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import feature_selection [as 別名]
def test_clone_2():
    # Tests that clone doesn't copy everything.
    # We first create an estimator, give it an own attribute, and
    # make a copy of its original state. Then we check that the copy doesn't
    # have the specific attribute we manually added to the initial estimator.

    from sklearn.feature_selection import SelectFpr, f_classif

    selector = SelectFpr(f_classif, alpha=0.1)
    selector.own_attribute = "test"
    new_selector = clone(selector)
    assert not hasattr(new_selector, "own_attribute") 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:14,代碼來源:test_base.py

示例5: test_clone_2

# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import feature_selection [as 別名]
def test_clone_2():
    # Tests that clone doesn't copy everything.
    # We first create an estimator, give it an own attribute, and
    # make a copy of its original state. Then we check that the copy doesn't
    # have the specific attribute we manually added to the initial estimator.

    from sklearn.feature_selection import SelectFpr, f_classif

    selector = SelectFpr(f_classif, alpha=0.1)
    selector.own_attribute = "test"
    new_selector = clone(selector)
    assert_false(hasattr(new_selector, "own_attribute")) 
開發者ID:alvarobartt,項目名稱:twitter-stock-recommendation,代碼行數:14,代碼來源:test_base.py


注:本文中的sklearn.feature_selection方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。