當前位置: 首頁>>代碼示例>>Python>>正文


Python joblib.delayed方法代碼示例

本文整理匯總了Python中sklearn.externals.joblib.delayed方法的典型用法代碼示例。如果您正苦於以下問題:Python joblib.delayed方法的具體用法?Python joblib.delayed怎麽用?Python joblib.delayed使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在sklearn.externals.joblib的用法示例。


在下文中一共展示了joblib.delayed方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: batch_predict

# 需要導入模塊: from sklearn.externals import joblib [as 別名]
# 或者: from sklearn.externals.joblib import delayed [as 別名]
def batch_predict(fn):
        def _predict(self, df, preprocessor=None, **kwargs):
            # print('Is given instance a df? ', isinstance(df, pd.DataFrame))
            if isinstance(df, pd.DataFrame):
                if preprocessor:
                    preprocessor(df)
                
                rows = []
                if self.n_jobs != 1:
                    with Parallel(n_jobs=self.n_jobs, verbose=self.verbose, backend=self.backend) as parallel:
                        rows = parallel([delayed(fn)(*(self, row), **kwargs) for idx, row in df.iterrows()])
                else:
                    with tqdm(total=df.shape[0]) as pbar:
                        for idx, row in df.iterrows():
                            rows.append(fn(self, row, **{**row, **kwargs}))
                            pbar.update()
                return rows
            else:
                return fn(self, df, **kwargs)
        return _predict 
開發者ID:sattree,項目名稱:gap,代碼行數:22,代碼來源:pronoun_resolution.py

示例2: calc_fitness

# 需要導入模塊: from sklearn.externals import joblib [as 別名]
# 或者: from sklearn.externals.joblib import delayed [as 別名]
def calc_fitness(self,X,labels,fit_choice,sel):
        """computes fitness of individual output yhat.
        yhat: output of a program.
        labels: correct outputs
        fit_choice: choice of fitness function
        """

        if 'lexicase' in sel:
            # return list(map(lambda yhat: self.f_vec[fit_choice](labels,yhat),X))
            return np.asarray(
                              [self.proper(self.f_vec[fit_choice](labels,
                                                        yhat)) for yhat in X],
                                                        order='F')
            # return list(Parallel(n_jobs=-1)(delayed(self.f_vec[fit_choice])(labels,yhat) for yhat in X))
        else:
            # return list(map(lambda yhat: self.f[fit_choice](labels,yhat),X))
            return np.asarray([self.f[fit_choice](labels,yhat) for yhat in X],
                            order='F').reshape(-1)

            # return list(Parallel(n_jobs=-1)(delayed(self.f[fit_choice])(labels,yhat) for yhat in X)) 
開發者ID:lacava,項目名稱:few,代碼行數:22,代碼來源:evaluation.py

示例3: _generateFragments

# 需要導入模塊: from sklearn.externals import joblib [as 別名]
# 或者: from sklearn.externals.joblib import delayed [as 別名]
def _generateFragments(self):
        voc=set(self.vocabulary)
        fpsdict = dict([(idx,{}) for idx in self.moldata.index])
        nrows = self.moldata.shape[0]
        counter = 0
        with Parallel(n_jobs=self.n_jobs,verbose=self.verbose) as parallel:
            while counter < nrows:
                nextChunk = min(counter+(self.n_jobs*self.chunksize),nrows)
                result = parallel(delayed(_generateMolFrags)(mollist, voc,
                                                    self.fragmentMethod, 
                                                    self.fragIdx)
                                   for mollist in self._produceDataChunks(counter,nextChunk,self.chunksize))
                for r in result:
                    counter+=len(r)
                    fpsdict.update(r)            
        self.moldata['fps'] = np.array(sorted(fpsdict.items()))[:,1]                
    
    # construct the molecule-fragment matrix as input for the LDA algorithm 
開發者ID:rdkit,項目名稱:CheTo,代碼行數:20,代碼來源:chemTopicModel.py

示例4: run

# 需要導入模塊: from sklearn.externals import joblib [as 別名]
# 或者: from sklearn.externals.joblib import delayed [as 別名]
def run(n_seeds, n_jobs, _run, _seed):
    seed_list = check_random_state(_seed).randint(np.iinfo(np.uint32).max,
                                                  size=n_seeds)
    exps = []
    exps += [{'method': 'sgd',
              'step_size': step_size}
             for step_size in np.logspace(-3, 3, 7)]
    exps += [{'method': 'gram',
             'reduction': reduction}
            for reduction in [1, 4, 6, 8, 12, 24]]

    rundir = join(basedir, str(_run._id), 'run')
    if not os.path.exists(rundir):
        os.makedirs(rundir)

    Parallel(n_jobs=n_jobs,
             verbose=10)(delayed(single_run)(config_updates, rundir, i)
                         for i, config_updates in enumerate(exps)) 
開發者ID:arthurmensch,項目名稱:modl,代碼行數:20,代碼來源:multi_decompose_images.py

示例5: run

# 需要導入模塊: from sklearn.externals import joblib [as 別名]
# 或者: from sklearn.externals.joblib import delayed [as 別名]
def run(n_seeds, n_jobs, _run, _seed):
    seed_list = check_random_state(_seed).randint(np.iinfo(np.uint32).max,
                                                  size=n_seeds)
    exps = []
    exps += [{'method': 'sgd',
              'step_size': step_size}
             for step_size in np.logspace(-7, -7, 1)]
    exps += [{'method': 'gram',
              'reduction': reduction}
             for reduction in [12]]

    rundir = join(basedir, str(_run._id), 'run')
    if not os.path.exists(rundir):
        os.makedirs(rundir)

    Parallel(n_jobs=n_jobs,
             verbose=10)(delayed(single_run)(config_updates, rundir, i)
                         for i, config_updates in enumerate(exps)) 
開發者ID:arthurmensch,項目名稱:modl,代碼行數:20,代碼來源:multi_decompose_fmri.py

示例6: fit_transform

# 需要導入模塊: from sklearn.externals import joblib [as 別名]
# 或者: from sklearn.externals.joblib import delayed [as 別名]
def fit_transform(self, X, y=None, **fit_params):
        """
        Fits the transformer using ``X`` (and possibly ``y``). Transforms
        ``X`` using the transformers, uses :func:`pandas.concat`
        to horizontally concatenate the results.

        Returns:

            ``self``
        """
        verify_x_type(X)
        verify_y_type(y)

        Xts = joblib.Parallel(n_jobs=self.n_jobs)(
            joblib.delayed(_fit_transform)(trans, weight, X, y, **fit_params) for _, trans, weight in self._iter())
        return self.__concat(Xts) 
開發者ID:atavory,項目名稱:ibex,代碼行數:18,代碼來源:_base.py

示例7: _base_est_fit

# 需要導入模塊: from sklearn.externals import joblib [as 別名]
# 或者: from sklearn.externals.joblib import delayed [as 別名]
def _base_est_fit(self, X, y, **fit_params):
        """Fit the base estimators on X and y.
        """
        fit_params_ests = self._extract_fit_params(**fit_params)

        _jobs = []
        for name, est in self.estimator_list[:-1]:
            _jobs.append(delayed(_fit_est)(
                clone(est), X, y, **fit_params_ests[name]))

        _out = Parallel(
            n_jobs=self.n_jobs,
            verbose=self.verbose,
            pre_dispatch=self.pre_dispatch)(_jobs)

        for name, _ in self.estimator_list[:-1]:
            self._replace_est('estimator_list', name, _out.pop(0)) 
開發者ID:civisanalytics,項目名稱:civisml-extensions,代碼行數:19,代碼來源:stacking.py

示例8: _run_algorithm

# 需要導入模塊: from sklearn.externals import joblib [as 別名]
# 或者: from sklearn.externals.joblib import delayed [as 別名]
def _run_algorithm(self):
        """ Runs nearest neighbor (NN) identification and feature scoring to yield SURF scores. """
        sm = cnt = 0
        for i in range(self._datalen):
            sm += sum(self._distance_array[i])
            cnt += len(self._distance_array[i])
        avg_dist = sm / float(cnt)

        nan_entries = np.isnan(self._X)

        NNlist = [self._find_neighbors(datalen, avg_dist) for datalen in range(self._datalen)]
        scores = np.sum(Parallel(n_jobs=self.n_jobs)(delayed(
            SURF_compute_scores)(instance_num, self.attr, nan_entries, self._num_attributes, self.mcmap,
                                 NN, self._headers, self._class_type, self._X, self._y, self._labels_std, self.data_type)
            for instance_num, NN in zip(range(self._datalen), NNlist)), axis=0)

        return np.array(scores) 
開發者ID:EpistasisLab,項目名稱:scikit-rebate,代碼行數:19,代碼來源:surf.py

示例9: _distarray_missing

# 需要導入模塊: from sklearn.externals import joblib [as 別名]
# 或者: from sklearn.externals.joblib import delayed [as 別名]
def _distarray_missing(self, xc, xd, cdiffs):
        """Distance array calculation for data with missing values"""
        cindices = []
        dindices = []
        # Get Boolean mask locating missing values for continuous and discrete features separately. These correspond to xc and xd respectively.
        for i in range(self._datalen):
            cindices.append(np.where(np.isnan(xc[i]))[0])
            dindices.append(np.where(np.isnan(xd[i]))[0])

        if self.n_jobs != 1:
            dist_array = Parallel(n_jobs=self.n_jobs)(delayed(get_row_missing)(
                xc, xd, cdiffs, index, cindices, dindices) for index in range(self._datalen))
        else:
            # For each instance calculate distance from all other instances (in non-redundant manner) (i.e. computes triangle, and puts zeros in for rest to form square).
            dist_array = [get_row_missing(xc, xd, cdiffs, index, cindices, dindices)
                          for index in range(self._datalen)]

        return np.array(dist_array)
    #==================================================================#

############################# ReliefF ############################################ 
開發者ID:EpistasisLab,項目名稱:scikit-rebate,代碼行數:23,代碼來源:relieff.py

示例10: _run_algorithm

# 需要導入模塊: from sklearn.externals import joblib [as 別名]
# 或者: from sklearn.externals.joblib import delayed [as 別名]
def _run_algorithm(self):
        """ Runs nearest neighbor (NN) identification and feature scoring to yield ReliefF scores. """

        # Find nearest neighbors
        NNlist = map(self._find_neighbors, range(self._datalen))

        # Feature scoring - using identified nearest neighbors
        nan_entries = np.isnan(self._X)  # boolean mask for missing data values

        # Call the scoring method for the ReliefF algorithm
        scores = np.sum(Parallel(n_jobs=self.n_jobs)(delayed(
            ReliefF_compute_scores)(instance_num, self.attr, nan_entries, self._num_attributes, self.mcmap,
                                    NN, self._headers, self._class_type, self._X, self._y, self._labels_std, self.data_type)
            for instance_num, NN in zip(range(self._datalen), NNlist)), axis=0)

        return np.array(scores) 
開發者ID:EpistasisLab,項目名稱:scikit-rebate,代碼行數:18,代碼來源:relieff.py

示例11: fit_score

# 需要導入模塊: from sklearn.externals import joblib [as 別名]
# 或者: from sklearn.externals.joblib import delayed [as 別名]
def fit_score(self, X, Y):
        if isinstance(self.cv, int):
            n_folds = self.cv
            self.cv = KFold(n_splits=n_folds).split(X)

        # Formatting is kinda ugly but provides best debugging view
        out = Parallel(n_jobs=self.n_jobs,
                       verbose=self.verbose,
                       pre_dispatch=self.pre_dispatch)\
            (delayed(_fit_and_score)(clone(self.clf), X, Y, self.metric,
                                     train, test, self.verbose, {},
                                     {}, return_parameters=False,
                                     error_score='raise')
             for train, test in self.cv)

        # Out is a list of triplet: score, estimator, n_test_samples
        scores = list(zip(*out))[0]
        return np.mean(scores), np.std(scores) 
開發者ID:skylergrammer,項目名稱:SimulatedAnnealing,代碼行數:20,代碼來源:optimize.py

示例12: setupGamma

# 需要導入模塊: from sklearn.externals import joblib [as 別名]
# 或者: from sklearn.externals.joblib import delayed [as 別名]
def setupGamma(self, ranking_size):
        if self.gammaRankingSize is not None and self.gammaRankingSize==ranking_size:
            print("UniformPolicy:setupGamma [INFO] Gamma has been pre-computed for this ranking_size. Size of Gamma cache:", len(self.gammas), flush=True)
            return
        
        gammaFile=Settings.DATA_DIR+self.dataset.name+'_'+self.name+'_'+str(ranking_size)+'.z'
        if os.path.exists(gammaFile):
            self.gammas=joblib.load(gammaFile)
            self.gammaRankingSize=ranking_size
            print("UniformPolicy:setupGamma [INFO] Using precomputed gamma", gammaFile, flush=True)
            
        else:
            self.gammas={}
            self.gammaRankingSize=ranking_size
            
            candidateSet=set(self.dataset.docsPerQuery)
            
            responses=joblib.Parallel(n_jobs=-2, verbose=50)(joblib.delayed(UniformGamma)(i, ranking_size, self.allowRepetitions) for i in candidateSet)
            
            for tup in responses:
                self.gammas[tup[0]]=tup[1]
            
            joblib.dump(self.gammas, gammaFile, compress=9, protocol=-1)
            print("", flush=True)
            print("UniformPolicy:setupGamma [INFO] Finished creating Gamma_pinv cache. Size", len(self.gammas), flush=True) 
開發者ID:adith387,項目名稱:slates_semisynth_expts,代碼行數:27,代碼來源:Policy.py

示例13: compute_splits_parallel

# 需要導入模塊: from sklearn.externals import joblib [as 別名]
# 或者: from sklearn.externals.joblib import delayed [as 別名]
def compute_splits_parallel(G, output_path, owa=True, train_frac=0.51, num_fe_train=None, num_fe_test=None,
                            num_splits=10):
    r"""
    Computes in parallel the required number of train/test splits of edges and non-edges from an input graph
    and writes the data to files. The train sets are always connected / weakly connected and span all nodes
    of the input graph. Input graphs (digraphs) cannot contain more than one (weakly) connected component.
    
    Parameters
    ----------
    G : graph
       A NetworkX graph
    output_path : string
       Indicates the path where data will be stored. Can include a name for all splits to share.  
    owa : bool, optional
       Encodes the belief that the network respects or not the open world assumption. Default is True.
       If OWA=True, false train edges can be true test edges. False edges sampled from train graph. 
       If OWA=False, closed world is assumed so false train edges are known to be false (not in G)
    train_frac : float, optional
       The relative size (in range (0.0, 1.0]) of the train set with respect to the total number of edges in the graph.
       Default is 0.51.
    num_fe_train : int, optional
       The number of train false edges to generate. Default is same number as true train edges.
    num_fe_test : int, optional
       The number of test false edges to generate. Default is same number as true test edges.
    num_splits : int, optional
       The number of train/test splits to generate. Default is 10.
    """
    # Compute the splits sequentially or in parallel
    backend = 'multiprocessing'
    path_func = delayed(_compute_one_split)
    Parallel(n_jobs=num_splits, verbose=True, backend=backend)(
        path_func(G, output_path, owa, train_frac, num_fe_train, num_fe_test, split) for split in range(num_splits)) 
開發者ID:Dru-Mara,項目名稱:EvalNE,代碼行數:34,代碼來源:split_train_test.py

示例14: transform

# 需要導入模塊: from sklearn.externals import joblib [as 別名]
# 或者: from sklearn.externals.joblib import delayed [as 別名]
def transform(self,x,inds=None,labels = None):
        """return a transformation of x using population outputs"""
        if inds:
            # return np.asarray(Parallel(n_jobs=10)(delayed(self.out)(I,x,labels,self.otype) 
            #                           for I in inds)).transpose()
            return np.asarray(
                [self.out(I,x,labels,self.otype) for I in inds]).transpose()
        elif self._best_inds:
            # return np.asarray(Parallel(n_jobs=10)(delayed(self.out)(I,x,labels,self.otype) 
            #                                   for I in self._best_inds)).transpose()
            return np.asarray(
                [self.out(I,x,labels,self.otype) for I in self._best_inds]).transpose()
        else:
            return x 
開發者ID:lacava,項目名稱:few,代碼行數:16,代碼來源:few.py

示例15: transform

# 需要導入模塊: from sklearn.externals import joblib [as 別名]
# 或者: from sklearn.externals.joblib import delayed [as 別名]
def transform(self, X, y=None):
        parallel = Parallel(
            n_jobs=self.n_jobs,
            pre_dispatch=self.pre_dispatch,
            verbose=self.verbose
        )
        stats_list = parallel(delayed(self._get_stats)(X[i_smpl, :]) for i_smpl in range(len(X)))
        return np.array(stats_list) 
開發者ID:mengli,項目名稱:MachineLearning,代碼行數:10,代碼來源:pipline.py


注:本文中的sklearn.externals.joblib.delayed方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。