當前位置: 首頁>>代碼示例>>Python>>正文


Python joblib.Parallel方法代碼示例

本文整理匯總了Python中sklearn.externals.joblib.Parallel方法的典型用法代碼示例。如果您正苦於以下問題:Python joblib.Parallel方法的具體用法?Python joblib.Parallel怎麽用?Python joblib.Parallel使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在sklearn.externals.joblib的用法示例。


在下文中一共展示了joblib.Parallel方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _do_fit

# 需要導入模塊: from sklearn.externals import joblib [as 別名]
# 或者: from sklearn.externals.joblib import Parallel [as 別名]
def _do_fit(n_jobs, verbose, pre_dispatch, base_estimator,
                X, y, scorer, parameter_iterable, fit_params,
                error_score, cv, **kwargs):
        groups = kwargs.pop('groups')

        # test_score, n_samples, parameters
        out = Parallel(n_jobs=n_jobs, verbose=verbose, pre_dispatch=pre_dispatch)(
            delayed(_fit_and_score)(
                clone(base_estimator), X, y, scorer,
                train, test, verbose, parameters,
                fit_params=fit_params,
                return_train_score=False,
                return_n_test_samples=True,
                return_times=False,
                return_parameters=True,
                error_score=error_score)
            for parameters in parameter_iterable
            for train, test in cv.split(X, y, groups))

        # test_score, n_samples, _, parameters
        return [(mod[0], mod[1], None, mod[2]) for mod in out] 
開發者ID:tgsmith61591,項目名稱:skutil,代碼行數:23,代碼來源:fixes.py

示例2: batch_predict

# 需要導入模塊: from sklearn.externals import joblib [as 別名]
# 或者: from sklearn.externals.joblib import Parallel [as 別名]
def batch_predict(fn):
        def _predict(self, df, preprocessor=None, **kwargs):
            # print('Is given instance a df? ', isinstance(df, pd.DataFrame))
            if isinstance(df, pd.DataFrame):
                if preprocessor:
                    preprocessor(df)
                
                rows = []
                if self.n_jobs != 1:
                    with Parallel(n_jobs=self.n_jobs, verbose=self.verbose, backend=self.backend) as parallel:
                        rows = parallel([delayed(fn)(*(self, row), **kwargs) for idx, row in df.iterrows()])
                else:
                    with tqdm(total=df.shape[0]) as pbar:
                        for idx, row in df.iterrows():
                            rows.append(fn(self, row, **{**row, **kwargs}))
                            pbar.update()
                return rows
            else:
                return fn(self, df, **kwargs)
        return _predict 
開發者ID:sattree,項目名稱:gap,代碼行數:22,代碼來源:pronoun_resolution.py

示例3: calc_fitness

# 需要導入模塊: from sklearn.externals import joblib [as 別名]
# 或者: from sklearn.externals.joblib import Parallel [as 別名]
def calc_fitness(self,X,labels,fit_choice,sel):
        """computes fitness of individual output yhat.
        yhat: output of a program.
        labels: correct outputs
        fit_choice: choice of fitness function
        """

        if 'lexicase' in sel:
            # return list(map(lambda yhat: self.f_vec[fit_choice](labels,yhat),X))
            return np.asarray(
                              [self.proper(self.f_vec[fit_choice](labels,
                                                        yhat)) for yhat in X],
                                                        order='F')
            # return list(Parallel(n_jobs=-1)(delayed(self.f_vec[fit_choice])(labels,yhat) for yhat in X))
        else:
            # return list(map(lambda yhat: self.f[fit_choice](labels,yhat),X))
            return np.asarray([self.f[fit_choice](labels,yhat) for yhat in X],
                            order='F').reshape(-1)

            # return list(Parallel(n_jobs=-1)(delayed(self.f[fit_choice])(labels,yhat) for yhat in X)) 
開發者ID:lacava,項目名稱:few,代碼行數:22,代碼來源:evaluation.py

示例4: _generateFragments

# 需要導入模塊: from sklearn.externals import joblib [as 別名]
# 或者: from sklearn.externals.joblib import Parallel [as 別名]
def _generateFragments(self):
        voc=set(self.vocabulary)
        fpsdict = dict([(idx,{}) for idx in self.moldata.index])
        nrows = self.moldata.shape[0]
        counter = 0
        with Parallel(n_jobs=self.n_jobs,verbose=self.verbose) as parallel:
            while counter < nrows:
                nextChunk = min(counter+(self.n_jobs*self.chunksize),nrows)
                result = parallel(delayed(_generateMolFrags)(mollist, voc,
                                                    self.fragmentMethod, 
                                                    self.fragIdx)
                                   for mollist in self._produceDataChunks(counter,nextChunk,self.chunksize))
                for r in result:
                    counter+=len(r)
                    fpsdict.update(r)            
        self.moldata['fps'] = np.array(sorted(fpsdict.items()))[:,1]                
    
    # construct the molecule-fragment matrix as input for the LDA algorithm 
開發者ID:rdkit,項目名稱:CheTo,代碼行數:20,代碼來源:chemTopicModel.py

示例5: fit_transform

# 需要導入模塊: from sklearn.externals import joblib [as 別名]
# 或者: from sklearn.externals.joblib import Parallel [as 別名]
def fit_transform(self, X, y=None, **fit_params):
        self._validate_transformers()
        result = Parallel(n_jobs=self.n_jobs)(
            delayed(_fit_transform_one)(
                transformer=trans,
                X=X,
                y=y,
                weight=weight,
                **fit_params)
            for name, trans, weight in self._iter())

        if not result:
            # All transformers are None
            return np.zeros((X.shape[0], 0))
        Xs, transformers = zip(*result)
        self._update_transformer_list(transformers)
        if any(sparse.issparse(f) for f in Xs):
            Xs = sparse.hstack(Xs).tocsr()
        else:
            Xs = self.merge_dataframes_by_column(Xs)
        return Xs 
開發者ID:marrrcin,項目名稱:pandas-feature-union,代碼行數:23,代碼來源:pandas_feature_union.py

示例6: transform

# 需要導入模塊: from sklearn.externals import joblib [as 別名]
# 或者: from sklearn.externals.joblib import Parallel [as 別名]
def transform(self, X):
        Xs = Parallel(n_jobs=self.n_jobs)(
            delayed(_transform_one)(
                transformer=trans,
                X=X,
                y=None,
                weight=weight)
            for name, trans, weight in self._iter())
        if not Xs:
            # All transformers are None
            return np.zeros((X.shape[0], 0))
        if any(sparse.issparse(f) for f in Xs):
            Xs = sparse.hstack(Xs).tocsr()
        else:
            Xs = self.merge_dataframes_by_column(Xs)
        return Xs 
開發者ID:marrrcin,項目名稱:pandas-feature-union,代碼行數:18,代碼來源:pandas_feature_union.py

示例7: fit_transform

# 需要導入模塊: from sklearn.externals import joblib [as 別名]
# 或者: from sklearn.externals.joblib import Parallel [as 別名]
def fit_transform(self, X, y=None, **fit_params):
        """
        Fits the transformer using ``X`` (and possibly ``y``). Transforms
        ``X`` using the transformers, uses :func:`pandas.concat`
        to horizontally concatenate the results.

        Returns:

            ``self``
        """
        verify_x_type(X)
        verify_y_type(y)

        Xts = joblib.Parallel(n_jobs=self.n_jobs)(
            joblib.delayed(_fit_transform)(trans, weight, X, y, **fit_params) for _, trans, weight in self._iter())
        return self.__concat(Xts) 
開發者ID:atavory,項目名稱:ibex,代碼行數:18,代碼來源:_base.py

示例8: _base_est_fit

# 需要導入模塊: from sklearn.externals import joblib [as 別名]
# 或者: from sklearn.externals.joblib import Parallel [as 別名]
def _base_est_fit(self, X, y, **fit_params):
        """Fit the base estimators on X and y.
        """
        fit_params_ests = self._extract_fit_params(**fit_params)

        _jobs = []
        for name, est in self.estimator_list[:-1]:
            _jobs.append(delayed(_fit_est)(
                clone(est), X, y, **fit_params_ests[name]))

        _out = Parallel(
            n_jobs=self.n_jobs,
            verbose=self.verbose,
            pre_dispatch=self.pre_dispatch)(_jobs)

        for name, _ in self.estimator_list[:-1]:
            self._replace_est('estimator_list', name, _out.pop(0)) 
開發者ID:civisanalytics,項目名稱:civisml-extensions,代碼行數:19,代碼來源:stacking.py

示例9: _run_algorithm

# 需要導入模塊: from sklearn.externals import joblib [as 別名]
# 或者: from sklearn.externals.joblib import Parallel [as 別名]
def _run_algorithm(self):
        """ Runs nearest neighbor (NN) identification and feature scoring to yield SURF scores. """
        sm = cnt = 0
        for i in range(self._datalen):
            sm += sum(self._distance_array[i])
            cnt += len(self._distance_array[i])
        avg_dist = sm / float(cnt)

        nan_entries = np.isnan(self._X)

        NNlist = [self._find_neighbors(datalen, avg_dist) for datalen in range(self._datalen)]
        scores = np.sum(Parallel(n_jobs=self.n_jobs)(delayed(
            SURF_compute_scores)(instance_num, self.attr, nan_entries, self._num_attributes, self.mcmap,
                                 NN, self._headers, self._class_type, self._X, self._y, self._labels_std, self.data_type)
            for instance_num, NN in zip(range(self._datalen), NNlist)), axis=0)

        return np.array(scores) 
開發者ID:EpistasisLab,項目名稱:scikit-rebate,代碼行數:19,代碼來源:surf.py

示例10: _distarray_missing

# 需要導入模塊: from sklearn.externals import joblib [as 別名]
# 或者: from sklearn.externals.joblib import Parallel [as 別名]
def _distarray_missing(self, xc, xd, cdiffs):
        """Distance array calculation for data with missing values"""
        cindices = []
        dindices = []
        # Get Boolean mask locating missing values for continuous and discrete features separately. These correspond to xc and xd respectively.
        for i in range(self._datalen):
            cindices.append(np.where(np.isnan(xc[i]))[0])
            dindices.append(np.where(np.isnan(xd[i]))[0])

        if self.n_jobs != 1:
            dist_array = Parallel(n_jobs=self.n_jobs)(delayed(get_row_missing)(
                xc, xd, cdiffs, index, cindices, dindices) for index in range(self._datalen))
        else:
            # For each instance calculate distance from all other instances (in non-redundant manner) (i.e. computes triangle, and puts zeros in for rest to form square).
            dist_array = [get_row_missing(xc, xd, cdiffs, index, cindices, dindices)
                          for index in range(self._datalen)]

        return np.array(dist_array)
    #==================================================================#

############################# ReliefF ############################################ 
開發者ID:EpistasisLab,項目名稱:scikit-rebate,代碼行數:23,代碼來源:relieff.py

示例11: _run_algorithm

# 需要導入模塊: from sklearn.externals import joblib [as 別名]
# 或者: from sklearn.externals.joblib import Parallel [as 別名]
def _run_algorithm(self):
        """ Runs nearest neighbor (NN) identification and feature scoring to yield ReliefF scores. """

        # Find nearest neighbors
        NNlist = map(self._find_neighbors, range(self._datalen))

        # Feature scoring - using identified nearest neighbors
        nan_entries = np.isnan(self._X)  # boolean mask for missing data values

        # Call the scoring method for the ReliefF algorithm
        scores = np.sum(Parallel(n_jobs=self.n_jobs)(delayed(
            ReliefF_compute_scores)(instance_num, self.attr, nan_entries, self._num_attributes, self.mcmap,
                                    NN, self._headers, self._class_type, self._X, self._y, self._labels_std, self.data_type)
            for instance_num, NN in zip(range(self._datalen), NNlist)), axis=0)

        return np.array(scores) 
開發者ID:EpistasisLab,項目名稱:scikit-rebate,代碼行數:18,代碼來源:relieff.py

示例12: _extract_and_write

# 需要導入模塊: from sklearn.externals import joblib [as 別名]
# 或者: from sklearn.externals.joblib import Parallel [as 別名]
def _extract_and_write(self, X, neighbor_id_lists, distances_to_neighbors, fileName = "l2r_train", y = None):
        
        labels_in_neighborhood = Parallel(n_jobs=self.n_jobs)(
            delayed(_create_training_samples)(cur_doc, neighbor_list, X, y, cur_doc + 1, distances_to_neighbors, 
                                              self.count_concepts, self.count_terms, self.number_of_concepts, 
                                              self.ibm1 if self.n_jobs == 1 and self.translation_probability else None) for cur_doc, neighbor_list in enumerate(neighbor_id_lists))
            
            
        doc_to_neighborhood_dict = self._merge_dicts(labels_in_neighborhood)
        
        filenames = ["samples_" + str(qid + 1) + ".tmp" for qid in range(len(doc_to_neighborhood_dict))]
        with open(fileName, 'w') as outfile:
            for fname in filenames:
                with open(fname) as infile:
                    for line in infile:
                        outfile.write(line)
                outfile.write('\n')
                
        return doc_to_neighborhood_dict 
開發者ID:quadflor,項目名稱:Quadflor,代碼行數:21,代碼來源:kneighbour_l2r_classifier.py

示例13: fit_score

# 需要導入模塊: from sklearn.externals import joblib [as 別名]
# 或者: from sklearn.externals.joblib import Parallel [as 別名]
def fit_score(self, X, Y):
        if isinstance(self.cv, int):
            n_folds = self.cv
            self.cv = KFold(n_splits=n_folds).split(X)

        # Formatting is kinda ugly but provides best debugging view
        out = Parallel(n_jobs=self.n_jobs,
                       verbose=self.verbose,
                       pre_dispatch=self.pre_dispatch)\
            (delayed(_fit_and_score)(clone(self.clf), X, Y, self.metric,
                                     train, test, self.verbose, {},
                                     {}, return_parameters=False,
                                     error_score='raise')
             for train, test in self.cv)

        # Out is a list of triplet: score, estimator, n_test_samples
        scores = list(zip(*out))[0]
        return np.mean(scores), np.std(scores) 
開發者ID:skylergrammer,項目名稱:SimulatedAnnealing,代碼行數:20,代碼來源:optimize.py

示例14: setupGamma

# 需要導入模塊: from sklearn.externals import joblib [as 別名]
# 或者: from sklearn.externals.joblib import Parallel [as 別名]
def setupGamma(self, ranking_size):
        if self.gammaRankingSize is not None and self.gammaRankingSize==ranking_size:
            print("UniformPolicy:setupGamma [INFO] Gamma has been pre-computed for this ranking_size. Size of Gamma cache:", len(self.gammas), flush=True)
            return
        
        gammaFile=Settings.DATA_DIR+self.dataset.name+'_'+self.name+'_'+str(ranking_size)+'.z'
        if os.path.exists(gammaFile):
            self.gammas=joblib.load(gammaFile)
            self.gammaRankingSize=ranking_size
            print("UniformPolicy:setupGamma [INFO] Using precomputed gamma", gammaFile, flush=True)
            
        else:
            self.gammas={}
            self.gammaRankingSize=ranking_size
            
            candidateSet=set(self.dataset.docsPerQuery)
            
            responses=joblib.Parallel(n_jobs=-2, verbose=50)(joblib.delayed(UniformGamma)(i, ranking_size, self.allowRepetitions) for i in candidateSet)
            
            for tup in responses:
                self.gammas[tup[0]]=tup[1]
            
            joblib.dump(self.gammas, gammaFile, compress=9, protocol=-1)
            print("", flush=True)
            print("UniformPolicy:setupGamma [INFO] Finished creating Gamma_pinv cache. Size", len(self.gammas), flush=True) 
開發者ID:adith387,項目名稱:slates_semisynth_expts,代碼行數:27,代碼來源:Policy.py

示例15: fit

# 需要導入模塊: from sklearn.externals import joblib [as 別名]
# 或者: from sklearn.externals.joblib import Parallel [as 別名]
def fit(self, Z, **fit_params):
        """TODO: rewrite docstring
        Fit all transformers using X.
        Parameters
        ----------
        X : array-like or sparse matrix, shape (n_samples, n_features)
            Input data, used to fit transformers.
        """
        fit_params_steps = dict((step, {})
                                for step, _ in self.transformer_list)

        for pname, pval in six.iteritems(fit_params):
            step, param = pname.split('__', 1)
            fit_params_steps[step][param] = pval

        transformers = Parallel(n_jobs=self.n_jobs, backend="threading")(
            delayed(_fit_one_transformer)(trans, Z, **fit_params_steps[name])
            for name, trans in self.transformer_list)
        self._update_transformer_list(transformers)
        return self 
開發者ID:lensacom,項目名稱:sparkit-learn,代碼行數:22,代碼來源:pipeline.py


注:本文中的sklearn.externals.joblib.Parallel方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。