本文整理匯總了Python中sklearn.exceptions.UndefinedMetricWarning方法的典型用法代碼示例。如果您正苦於以下問題:Python exceptions.UndefinedMetricWarning方法的具體用法?Python exceptions.UndefinedMetricWarning怎麽用?Python exceptions.UndefinedMetricWarning使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類sklearn.exceptions
的用法示例。
在下文中一共展示了exceptions.UndefinedMetricWarning方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_average_binary_jaccard_score
# 需要導入模塊: from sklearn import exceptions [as 別名]
# 或者: from sklearn.exceptions import UndefinedMetricWarning [as 別名]
def test_average_binary_jaccard_score(recwarn):
# tp=0, fp=0, fn=1, tn=0
assert jaccard_score([1], [0], average='binary') == 0.
# tp=0, fp=0, fn=0, tn=1
msg = ('Jaccard is ill-defined and being set to 0.0 due to '
'no true or predicted samples')
assert assert_warns_message(UndefinedMetricWarning,
msg,
jaccard_score,
[0, 0], [0, 0],
average='binary') == 0.
# tp=1, fp=0, fn=0, tn=0 (pos_label=0)
assert jaccard_score([0], [0], pos_label=0,
average='binary') == 1.
y_true = np.array([1, 0, 1, 1, 0])
y_pred = np.array([1, 0, 1, 1, 1])
assert_almost_equal(jaccard_score(y_true, y_pred,
average='binary'), 3. / 4)
assert_almost_equal(jaccard_score(y_true, y_pred,
average='binary',
pos_label=0), 1. / 2)
assert not list(recwarn)
示例2: test_precision_recall_f1_no_labels
# 需要導入模塊: from sklearn import exceptions [as 別名]
# 或者: from sklearn.exceptions import UndefinedMetricWarning [as 別名]
def test_precision_recall_f1_no_labels(beta, average):
y_true = np.zeros((20, 3))
y_pred = np.zeros_like(y_true)
p, r, f, s = assert_warns(UndefinedMetricWarning,
precision_recall_fscore_support,
y_true, y_pred, average=average,
beta=beta)
assert_almost_equal(p, 0)
assert_almost_equal(r, 0)
assert_almost_equal(f, 0)
assert_equal(s, None)
fbeta = assert_warns(UndefinedMetricWarning, fbeta_score,
y_true, y_pred,
beta=beta, average=average)
assert_almost_equal(fbeta, 0)
示例3: test_precision_recall_f1_no_labels_average_none
# 需要導入模塊: from sklearn import exceptions [as 別名]
# 或者: from sklearn.exceptions import UndefinedMetricWarning [as 別名]
def test_precision_recall_f1_no_labels_average_none():
y_true = np.zeros((20, 3))
y_pred = np.zeros_like(y_true)
beta = 1
# tp = [0, 0, 0]
# fn = [0, 0, 0]
# fp = [0, 0, 0]
# support = [0, 0, 0]
# |y_hat_i inter y_i | = [0, 0, 0]
# |y_i| = [0, 0, 0]
# |y_hat_i| = [0, 0, 0]
p, r, f, s = assert_warns(UndefinedMetricWarning,
precision_recall_fscore_support,
y_true, y_pred, average=None, beta=beta)
assert_array_almost_equal(p, [0, 0, 0], 2)
assert_array_almost_equal(r, [0, 0, 0], 2)
assert_array_almost_equal(f, [0, 0, 0], 2)
assert_array_almost_equal(s, [0, 0, 0], 2)
fbeta = assert_warns(UndefinedMetricWarning, fbeta_score,
y_true, y_pred, beta=beta, average=None)
assert_array_almost_equal(fbeta, [0, 0, 0], 2)
示例4: test_roc_curve_one_label
# 需要導入模塊: from sklearn import exceptions [as 別名]
# 或者: from sklearn.exceptions import UndefinedMetricWarning [as 別名]
def test_roc_curve_one_label():
y_true = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
y_pred = [0, 1, 0, 1, 0, 1, 0, 1, 0, 1]
# assert there are warnings
w = UndefinedMetricWarning
fpr, tpr, thresholds = assert_warns(w, roc_curve, y_true, y_pred)
# all true labels, all fpr should be nan
assert_array_equal(fpr, np.full(len(thresholds), np.nan))
assert_equal(fpr.shape, tpr.shape)
assert_equal(fpr.shape, thresholds.shape)
# assert there are warnings
fpr, tpr, thresholds = assert_warns(w, roc_curve,
[1 - x for x in y_true],
y_pred)
# all negative labels, all tpr should be nan
assert_array_equal(tpr, np.full(len(thresholds), np.nan))
assert_equal(fpr.shape, tpr.shape)
assert_equal(fpr.shape, thresholds.shape)
示例5: specificity_score
# 需要導入模塊: from sklearn import exceptions [as 別名]
# 或者: from sklearn.exceptions import UndefinedMetricWarning [as 別名]
def specificity_score(y_true, y_pred, pos_label=1, sample_weight=None):
"""Compute the specificity or true negative rate.
Args:
y_true (array-like): Ground truth (correct) target values.
y_pred (array-like): Estimated targets as returned by a classifier.
pos_label (scalar, optional): The label of the positive class.
sample_weight (array-like, optional): Sample weights.
"""
MCM = multilabel_confusion_matrix(y_true, y_pred, labels=[pos_label],
sample_weight=sample_weight)
tn, fp, fn, tp = MCM.ravel()
negs = tn + fp
if negs == 0:
warnings.warn('specificity_score is ill-defined and being set to 0.0 '
'due to no negative samples.', UndefinedMetricWarning)
return 0.
return tn / negs
示例6: test_roc_curve_one_label
# 需要導入模塊: from sklearn import exceptions [as 別名]
# 或者: from sklearn.exceptions import UndefinedMetricWarning [as 別名]
def test_roc_curve_one_label():
y_true = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
y_pred = [0, 1, 0, 1, 0, 1, 0, 1, 0, 1]
# assert there are warnings
w = UndefinedMetricWarning
fpr, tpr, thresholds = assert_warns(w, roc_curve, y_true, y_pred)
# all true labels, all fpr should be nan
assert_array_equal(fpr,
np.nan * np.ones(len(thresholds)))
assert_equal(fpr.shape, tpr.shape)
assert_equal(fpr.shape, thresholds.shape)
# assert there are warnings
fpr, tpr, thresholds = assert_warns(w, roc_curve,
[1 - x for x in y_true],
y_pred)
# all negative labels, all tpr should be nan
assert_array_equal(tpr,
np.nan * np.ones(len(thresholds)))
assert_equal(fpr.shape, tpr.shape)
assert_equal(fpr.shape, thresholds.shape)
示例7: generalized_fpr
# 需要導入模塊: from sklearn import exceptions [as 別名]
# 或者: from sklearn.exceptions import UndefinedMetricWarning [as 別名]
def generalized_fpr(y_true, probas_pred, pos_label=1, sample_weight=None):
r"""Return the ratio of generalized false positives to negative examples in
the dataset, :math:`GFPR = \tfrac{GFP}{N}`.
Generalized confusion matrix measures such as this are calculated by summing
the probabilities of the positive class instead of the hard predictions.
Args:
y_true (array-like): Ground-truth (correct) target values.
probas_pred (array-like): Probability estimates of the positive class.
pos_label (scalar, optional): The label of the positive class.
sample_weight (array-like, optional): Sample weights.
Returns:
float: Generalized false positive rate. If there are no negative samples
in y_true, this will raise an
:class:`~sklearn.exceptions.UndefinedMetricWarning` and return 0.
"""
idx = (y_true != pos_label)
if not np.any(idx):
warnings.warn("generalized_fpr is ill-defined because there are no "
"negative samples in y_true.", UndefinedMetricWarning)
return 0.
if sample_weight is None:
return probas_pred[idx].mean()
return np.average(probas_pred[idx], weights=sample_weight[idx])
示例8: generalized_fnr
# 需要導入模塊: from sklearn import exceptions [as 別名]
# 或者: from sklearn.exceptions import UndefinedMetricWarning [as 別名]
def generalized_fnr(y_true, probas_pred, pos_label=1, sample_weight=None):
r"""Return the ratio of generalized false negatives to positive examples in
the dataset, :math:`GFNR = \tfrac{GFN}{P}`.
Generalized confusion matrix measures such as this are calculated by summing
the probabilities of the positive class instead of the hard predictions.
Args:
y_true (array-like): Ground-truth (correct) target values.
probas_pred (array-like): Probability estimates of the positive class.
pos_label (scalar, optional): The label of the positive class.
sample_weight (array-like, optional): Sample weights.
Returns:
float: Generalized false negative rate. If there are no positive samples
in y_true, this will raise an
:class:`~sklearn.exceptions.UndefinedMetricWarning` and return 0.
"""
idx = (y_true == pos_label)
if not np.any(idx):
warnings.warn("generalized_fnr is ill-defined because there are no "
"positive samples in y_true.", UndefinedMetricWarning)
return 0.
if sample_weight is None:
return 1 - probas_pred[idx].mean()
return 1 - np.average(probas_pred[idx], weights=sample_weight[idx])
# ============================ GROUP FAIRNESS ==================================
示例9: test_precision_recall_f1_no_labels
# 需要導入模塊: from sklearn import exceptions [as 別名]
# 或者: from sklearn.exceptions import UndefinedMetricWarning [as 別名]
def test_precision_recall_f1_no_labels():
y_true = np.zeros((20, 3))
y_pred = np.zeros_like(y_true)
# tp = [0, 0, 0]
# fn = [0, 0, 0]
# fp = [0, 0, 0]
# support = [0, 0, 0]
# |y_hat_i inter y_i | = [0, 0, 0]
# |y_i| = [0, 0, 0]
# |y_hat_i| = [0, 0, 0]
for beta in [1]:
p, r, f, s = assert_warns(UndefinedMetricWarning,
precision_recall_fscore_support,
y_true, y_pred, average=None, beta=beta)
assert_array_almost_equal(p, [0, 0, 0], 2)
assert_array_almost_equal(r, [0, 0, 0], 2)
assert_array_almost_equal(f, [0, 0, 0], 2)
assert_array_almost_equal(s, [0, 0, 0], 2)
fbeta = assert_warns(UndefinedMetricWarning, fbeta_score,
y_true, y_pred, beta=beta, average=None)
assert_array_almost_equal(fbeta, [0, 0, 0], 2)
for average in ["macro", "micro", "weighted", "samples"]:
p, r, f, s = assert_warns(UndefinedMetricWarning,
precision_recall_fscore_support,
y_true, y_pred, average=average,
beta=beta)
assert_almost_equal(p, 0)
assert_almost_equal(r, 0)
assert_almost_equal(f, 0)
assert_equal(s, None)
fbeta = assert_warns(UndefinedMetricWarning, fbeta_score,
y_true, y_pred,
beta=beta, average=average)
assert_almost_equal(fbeta, 0)
示例10: test_prf_warnings
# 需要導入模塊: from sklearn import exceptions [as 別名]
# 或者: from sklearn.exceptions import UndefinedMetricWarning [as 別名]
def test_prf_warnings():
# average of per-label scores
f, w = precision_recall_fscore_support, UndefinedMetricWarning
my_assert = assert_warns_message
for average in [None, 'weighted', 'macro']:
msg = ('Precision and F-score are ill-defined and '
'being set to 0.0 in labels with no predicted samples.')
my_assert(w, msg, f, [0, 1, 2], [1, 1, 2], average=average)
msg = ('Recall and F-score are ill-defined and '
'being set to 0.0 in labels with no true samples.')
my_assert(w, msg, f, [1, 1, 2], [0, 1, 2], average=average)
# average of per-sample scores
msg = ('Precision and F-score are ill-defined and '
'being set to 0.0 in samples with no predicted labels.')
my_assert(w, msg, f, np.array([[1, 0], [1, 0]]),
np.array([[1, 0], [0, 0]]), average='samples')
msg = ('Recall and F-score are ill-defined and '
'being set to 0.0 in samples with no true labels.')
my_assert(w, msg, f, np.array([[1, 0], [0, 0]]),
np.array([[1, 0], [1, 0]]),
average='samples')
# single score: micro-average
msg = ('Precision and F-score are ill-defined and '
'being set to 0.0 due to no predicted samples.')
my_assert(w, msg, f, np.array([[1, 1], [1, 1]]),
np.array([[0, 0], [0, 0]]), average='micro')
msg = ('Recall and F-score are ill-defined and '
'being set to 0.0 due to no true samples.')
my_assert(w, msg, f, np.array([[0, 0], [0, 0]]),
np.array([[1, 1], [1, 1]]), average='micro')
# single positive label
msg = ('Precision and F-score are ill-defined and '
'being set to 0.0 due to no predicted samples.')
my_assert(w, msg, f, [1, 1], [-1, -1], average='binary')
msg = ('Recall and F-score are ill-defined and '
'being set to 0.0 due to no true samples.')
my_assert(w, msg, f, [-1, -1], [1, 1], average='binary')
clean_warning_registry()
with warnings.catch_warnings(record=True) as record:
warnings.simplefilter('always')
precision_recall_fscore_support([0, 0], [0, 0], average="binary")
msg = ('Recall and F-score are ill-defined and '
'being set to 0.0 due to no true samples.')
assert_equal(str(record.pop().message), msg)
msg = ('Precision and F-score are ill-defined and '
'being set to 0.0 due to no predicted samples.')
assert_equal(str(record.pop().message), msg)
示例11: collect_story_predictions
# 需要導入模塊: from sklearn import exceptions [as 別名]
# 或者: from sklearn.exceptions import UndefinedMetricWarning [as 別名]
def collect_story_predictions(
completed_trackers: List['DialogueStateTracker'],
agent: 'Agent',
fail_on_prediction_errors: bool = False,
use_e2e: bool = False
) -> Tuple[StoryEvalution, int]:
"""Test the stories from a file, running them through the stored model."""
from rasa_nlu.test import get_evaluation_metrics
from tqdm import tqdm
story_eval_store = EvaluationStore()
failed = []
correct_dialogues = []
num_stories = len(completed_trackers)
logger.info("Evaluating {} stories\n"
"Progress:".format(num_stories))
action_list = []
for tracker in tqdm(completed_trackers):
tracker_results, predicted_tracker, tracker_actions = \
_predict_tracker_actions(tracker, agent,
fail_on_prediction_errors, use_e2e)
story_eval_store.merge_store(tracker_results)
action_list.extend(tracker_actions)
if tracker_results.has_prediction_target_mismatch():
# there is at least one wrong prediction
failed.append(predicted_tracker)
correct_dialogues.append(0)
else:
correct_dialogues.append(1)
logger.info("Finished collecting predictions.")
with warnings.catch_warnings():
from sklearn.exceptions import UndefinedMetricWarning
warnings.simplefilter("ignore", UndefinedMetricWarning)
report, precision, f1, accuracy = get_evaluation_metrics(
[1] * len(completed_trackers), correct_dialogues)
in_training_data_fraction = _in_training_data_fraction(action_list)
log_evaluation_table([1] * len(completed_trackers),
"END-TO-END" if use_e2e else "CONVERSATION",
report, precision, f1, accuracy,
in_training_data_fraction,
include_report=False)
return (StoryEvalution(evaluation_store=story_eval_store,
failed_stories=failed,
action_list=action_list,
in_training_data_fraction=in_training_data_fraction),
num_stories)
示例12: test
# 需要導入模塊: from sklearn import exceptions [as 別名]
# 或者: from sklearn.exceptions import UndefinedMetricWarning [as 別名]
def test(stories: Text,
agent: 'Agent',
max_stories: Optional[int] = None,
out_directory: Optional[Text] = None,
fail_on_prediction_errors: bool = False,
use_e2e: bool = False):
"""Run the evaluation of the stories, optionally plot the results."""
from rasa_nlu.test import get_evaluation_metrics
completed_trackers = await _generate_trackers(stories, agent,
max_stories, use_e2e)
story_evaluation, _ = collect_story_predictions(completed_trackers, agent,
fail_on_prediction_errors,
use_e2e)
evaluation_store = story_evaluation.evaluation_store
with warnings.catch_warnings():
from sklearn.exceptions import UndefinedMetricWarning
warnings.simplefilter("ignore", UndefinedMetricWarning)
report, precision, f1, accuracy = get_evaluation_metrics(
evaluation_store.serialise_targets(),
evaluation_store.serialise_predictions()
)
if out_directory:
plot_story_evaluation(evaluation_store.action_targets,
evaluation_store.action_predictions,
report, precision, f1, accuracy,
story_evaluation.in_training_data_fraction,
out_directory)
log_failed_stories(story_evaluation.failed_stories, out_directory)
return {
"report": report,
"precision": precision,
"f1": f1,
"accuracy": accuracy,
"actions": story_evaluation.action_list,
"in_training_data_fraction":
story_evaluation.in_training_data_fraction,
"is_end_to_end_evaluation": use_e2e
}
示例13: test
# 需要導入模塊: from sklearn import exceptions [as 別名]
# 或者: from sklearn.exceptions import UndefinedMetricWarning [as 別名]
def test(
stories: Text,
agent: "Agent",
max_stories: Optional[int] = None,
out_directory: Optional[Text] = None,
fail_on_prediction_errors: bool = False,
e2e: bool = False,
disable_plotting: bool = False,
):
"""Run the evaluation of the stories, optionally plot the results."""
from rasa.nlu.test import get_evaluation_metrics
completed_trackers = await _generate_trackers(stories, agent, max_stories, e2e)
story_evaluation, _ = collect_story_predictions(
completed_trackers, agent, fail_on_prediction_errors, e2e
)
evaluation_store = story_evaluation.evaluation_store
with warnings.catch_warnings():
from sklearn.exceptions import UndefinedMetricWarning
warnings.simplefilter("ignore", UndefinedMetricWarning)
targets, predictions = evaluation_store.serialise()
report, precision, f1, accuracy = get_evaluation_metrics(targets, predictions)
if out_directory:
plot_story_evaluation(
evaluation_store.action_targets,
evaluation_store.action_predictions,
report,
precision,
f1,
accuracy,
story_evaluation.in_training_data_fraction,
out_directory,
disable_plotting,
)
log_failed_stories(story_evaluation.failed_stories, out_directory)
return {
"report": report,
"precision": precision,
"f1": f1,
"accuracy": accuracy,
"actions": story_evaluation.action_list,
"in_training_data_fraction": story_evaluation.in_training_data_fraction,
"is_end_to_end_evaluation": e2e,
}
示例14: test_multilabel_input_NC
# 需要導入模塊: from sklearn import exceptions [as 別名]
# 或者: from sklearn.exceptions import UndefinedMetricWarning [as 別名]
def test_multilabel_input_NC():
def _test(average):
re = Recall(average=average, is_multilabel=True)
y_pred = torch.randint(0, 2, size=(20, 5))
y = torch.randint(0, 2, size=(20, 5)).long()
re.update((y_pred, y))
np_y_pred = to_numpy_multilabel(y_pred)
np_y = to_numpy_multilabel(y)
assert re._type == "multilabel"
re_compute = re.compute() if average else re.compute().mean().item()
with warnings.catch_warnings():
warnings.simplefilter("ignore", category=UndefinedMetricWarning)
assert recall_score(np_y, np_y_pred, average="samples") == pytest.approx(re_compute)
re.reset()
y_pred = torch.randint(0, 2, size=(10, 4))
y = torch.randint(0, 2, size=(10, 4)).long()
re.update((y_pred, y))
np_y_pred = y_pred.numpy()
np_y = y.numpy()
assert re._type == "multilabel"
re_compute = re.compute() if average else re.compute().mean().item()
with warnings.catch_warnings():
warnings.simplefilter("ignore", category=UndefinedMetricWarning)
assert recall_score(np_y, np_y_pred, average="samples") == pytest.approx(re_compute)
# Batched Updates
re.reset()
y_pred = torch.randint(0, 2, size=(100, 4))
y = torch.randint(0, 2, size=(100, 4)).long()
batch_size = 16
n_iters = y.shape[0] // batch_size + 1
for i in range(n_iters):
idx = i * batch_size
re.update((y_pred[idx : idx + batch_size], y[idx : idx + batch_size]))
np_y = y.numpy()
np_y_pred = y_pred.numpy()
assert re._type == "multilabel"
re_compute = re.compute() if average else re.compute().mean().item()
with warnings.catch_warnings():
warnings.simplefilter("ignore", category=UndefinedMetricWarning)
assert recall_score(np_y, np_y_pred, average="samples") == pytest.approx(re_compute)
for _ in range(5):
_test(average=True)
_test(average=False)
re1 = Recall(is_multilabel=True, average=True)
re2 = Recall(is_multilabel=True, average=False)
y_pred = torch.randint(0, 2, size=(10, 4))
y = torch.randint(0, 2, size=(10, 4)).long()
re1.update((y_pred, y))
re2.update((y_pred, y))
assert re1.compute() == pytest.approx(re2.compute().mean().item())
示例15: test_multilabel_input_NCL
# 需要導入模塊: from sklearn import exceptions [as 別名]
# 或者: from sklearn.exceptions import UndefinedMetricWarning [as 別名]
def test_multilabel_input_NCL():
def _test(average):
re = Recall(average=average, is_multilabel=True)
y_pred = torch.randint(0, 2, size=(10, 5, 10))
y = torch.randint(0, 2, size=(10, 5, 10)).long()
re.update((y_pred, y))
np_y_pred = to_numpy_multilabel(y_pred)
np_y = to_numpy_multilabel(y)
assert re._type == "multilabel"
re_compute = re.compute() if average else re.compute().mean().item()
with warnings.catch_warnings():
warnings.simplefilter("ignore", category=UndefinedMetricWarning)
assert recall_score(np_y, np_y_pred, average="samples") == pytest.approx(re_compute)
re.reset()
y_pred = torch.randint(0, 2, size=(15, 4, 10))
y = torch.randint(0, 2, size=(15, 4, 10)).long()
re.update((y_pred, y))
np_y_pred = to_numpy_multilabel(y_pred)
np_y = to_numpy_multilabel(y)
assert re._type == "multilabel"
re_compute = re.compute() if average else re.compute().mean().item()
with warnings.catch_warnings():
warnings.simplefilter("ignore", category=UndefinedMetricWarning)
assert recall_score(np_y, np_y_pred, average="samples") == pytest.approx(re_compute)
# Batched Updates
re.reset()
y_pred = torch.randint(0, 2, size=(100, 4, 12))
y = torch.randint(0, 2, size=(100, 4, 12)).long()
batch_size = 16
n_iters = y.shape[0] // batch_size + 1
for i in range(n_iters):
idx = i * batch_size
re.update((y_pred[idx : idx + batch_size], y[idx : idx + batch_size]))
np_y = to_numpy_multilabel(y)
np_y_pred = to_numpy_multilabel(y_pred)
assert re._type == "multilabel"
re_compute = re.compute() if average else re.compute().mean().item()
with warnings.catch_warnings():
warnings.simplefilter("ignore", category=UndefinedMetricWarning)
assert recall_score(np_y, np_y_pred, average="samples") == pytest.approx(re_compute)
for _ in range(5):
_test(average=True)
_test(average=False)
re1 = Recall(is_multilabel=True, average=True)
re2 = Recall(is_multilabel=True, average=False)
y_pred = torch.randint(0, 2, size=(10, 4, 20))
y = torch.randint(0, 2, size=(10, 4, 20)).long()
re1.update((y_pred, y))
re2.update((y_pred, y))
assert re1.compute() == pytest.approx(re2.compute().mean().item())