本文整理匯總了Python中sklearn.exceptions.NotFittedError方法的典型用法代碼示例。如果您正苦於以下問題:Python exceptions.NotFittedError方法的具體用法?Python exceptions.NotFittedError怎麽用?Python exceptions.NotFittedError使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類sklearn.exceptions
的用法示例。
在下文中一共展示了exceptions.NotFittedError方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_elliptic_envelope
# 需要導入模塊: from sklearn import exceptions [as 別名]
# 或者: from sklearn.exceptions import NotFittedError [as 別名]
def test_elliptic_envelope():
rnd = np.random.RandomState(0)
X = rnd.randn(100, 10)
clf = EllipticEnvelope(contamination=0.1)
assert_raises(NotFittedError, clf.predict, X)
assert_raises(NotFittedError, clf.decision_function, X)
clf.fit(X)
y_pred = clf.predict(X)
scores = clf.score_samples(X)
decisions = clf.decision_function(X)
assert_array_almost_equal(
scores, -clf.mahalanobis(X))
assert_array_almost_equal(clf.mahalanobis(X), clf.dist_)
assert_almost_equal(clf.score(X, np.ones(100)),
(100 - y_pred[y_pred == -1].size) / 100.)
assert(sum(y_pred == -1) == sum(decisions < 0))
示例2: diff_op
# 需要導入模塊: from sklearn import exceptions [as 別名]
# 或者: from sklearn.exceptions import NotFittedError [as 別名]
def diff_op(self):
"""The diffusion operator calculated from the data
"""
if self.graph is not None:
if isinstance(self.graph, graphtools.graphs.LandmarkGraph):
diff_op = self.graph.landmark_op
else:
diff_op = self.graph.diff_op
if sparse.issparse(diff_op):
diff_op = diff_op.toarray()
return diff_op
else:
raise NotFittedError(
"This PHATE instance is not fitted yet. Call "
"'fit' with appropriate arguments before "
"using this method."
)
示例3: test_keras_autoencoder_scoring
# 需要導入模塊: from sklearn import exceptions [as 別名]
# 或者: from sklearn.exceptions import NotFittedError [as 別名]
def test_keras_autoencoder_scoring(model, kind, n_features_out):
"""
Test the KerasAutoEncoder and KerasLSTMAutoEncoder have a working scoring function
"""
Model = pydoc.locate(f"gordo.machine.model.models.{model}")
model = Pipeline([("model", Model(kind=kind))])
X = np.random.random((8, 2))
# Should be able to deal with y output different than X input features
y = np.random.random((8, n_features_out))
with pytest.raises(NotFittedError):
model.score(X, y)
model.fit(X, y)
score = model.score(X, y)
logger.info(f"Score: {score:.4f}")
示例4: test_notfitted
# 需要導入模塊: from sklearn import exceptions [as 別名]
# 或者: from sklearn.exceptions import NotFittedError [as 別名]
def test_notfitted():
eclf = VotingClassifier(estimators=[('lr1', LogisticRegression()),
('lr2', LogisticRegression())],
voting='soft')
ereg = VotingRegressor([('dr', DummyRegressor())])
msg = ("This %s instance is not fitted yet. Call \'fit\'"
" with appropriate arguments before using this method.")
assert_raise_message(NotFittedError, msg % 'VotingClassifier',
eclf.predict, X)
assert_raise_message(NotFittedError, msg % 'VotingClassifier',
eclf.predict_proba, X)
assert_raise_message(NotFittedError, msg % 'VotingClassifier',
eclf.transform, X)
assert_raise_message(NotFittedError, msg % 'VotingRegressor',
ereg.predict, X_r)
assert_raise_message(NotFittedError, msg % 'VotingRegressor',
ereg.transform, X_r)
示例5: test_gaussian_mixture_predict_predict_proba
# 需要導入模塊: from sklearn import exceptions [as 別名]
# 或者: from sklearn.exceptions import NotFittedError [as 別名]
def test_gaussian_mixture_predict_predict_proba():
rng = np.random.RandomState(0)
rand_data = RandomData(rng)
for covar_type in COVARIANCE_TYPE:
X = rand_data.X[covar_type]
Y = rand_data.Y
g = GaussianMixture(n_components=rand_data.n_components,
random_state=rng, weights_init=rand_data.weights,
means_init=rand_data.means,
precisions_init=rand_data.precisions[covar_type],
covariance_type=covar_type)
# Check a warning message arrive if we don't do fit
assert_raise_message(NotFittedError,
"This GaussianMixture instance is not fitted "
"yet. Call 'fit' with appropriate arguments "
"before using this method.", g.predict, X)
g.fit(X)
Y_pred = g.predict(X)
Y_pred_proba = g.predict_proba(X).argmax(axis=1)
assert_array_equal(Y_pred, Y_pred_proba)
assert_greater(adjusted_rand_score(Y, Y_pred), .95)
示例6: transform
# 需要導入模塊: from sklearn import exceptions [as 別名]
# 或者: from sklearn.exceptions import NotFittedError [as 別名]
def transform(self, df: pd.DataFrame) -> Union[sparse_matrix, np.ndarray]:
try:
self.one_hot_enc.categories_
except:
raise NotFittedError(
"This WidePreprocessor instance is not fitted yet. "
"Call 'fit' with appropriate arguments before using this estimator."
)
df_wide = df.copy()[self.wide_cols]
if self.crossed_cols is not None:
df_wide, _ = self._cross_cols(df_wide)
if self.already_dummies:
X_oh_1 = df_wide[self.already_dummies].values
dummy_cols = [
c for c in self.wide_crossed_cols if c not in self.already_dummies
]
X_oh_2 = self.one_hot_enc.transform(df_wide[dummy_cols])
return np.hstack((X_oh_1, X_oh_2))
else:
return self.one_hot_enc.transform(df_wide[self.wide_crossed_cols])
示例7: transform
# 需要導入模塊: from sklearn import exceptions [as 別名]
# 或者: from sklearn.exceptions import NotFittedError [as 別名]
def transform(self, X, y=None):
"""Binarize X based on the fitted cut points."""
# scikit-learn checks
X = check_array(X)
if self.cut_points is None:
raise NotFittedError('Estimator not fitted, call `fit` before exploiting the model.')
if X.shape[1] != len(self.cut_points):
raise ValueError("Provided array's dimensions do not match with the ones from the "
"array `fit` was called on.")
binned = np.array([
np.digitize(x, self.cut_points[i])
if len(self.cut_points[i]) > 0
else np.zeros(x.shape)
for i, x in enumerate(X.T)
]).T
return binned
示例8: _compute_output
# 需要導入模塊: from sklearn import exceptions [as 別名]
# 或者: from sklearn.exceptions import NotFittedError [as 別名]
def _compute_output(self, X):
"""Get the outputs of the network, for use in prediction methods."""
if not self._is_fitted:
raise NotFittedError("Call fit before prediction")
X = self._check_X(X)
# Make predictions in batches.
pred_batches = []
start_idx = 0
n_examples = X.shape[0]
with self.graph_.as_default():
while start_idx < n_examples:
X_batch = \
X[start_idx:min(start_idx + self.batch_size, n_examples)]
feed_dict = self._make_feed_dict(X_batch)
start_idx += self.batch_size
pred_batches.append(
self._session.run(self.output_layer_, feed_dict=feed_dict))
y_pred = np.concatenate(pred_batches)
return y_pred
示例9: predict_log_proba
# 需要導入模塊: from sklearn import exceptions [as 別名]
# 或者: from sklearn.exceptions import NotFittedError [as 別名]
def predict_log_proba(self, X):
"""Compute log p(y=1).
Parameters
----------
X : numpy array or sparse matrix [n_samples, n_features]
Data.
Returns
-------
numpy array [n_samples]
Log probabilities.
"""
if not self._is_fitted:
raise NotFittedError("Call fit before predict_log_proba!")
return np.log(self.predict_proba(X))
示例10: predict
# 需要導入模塊: from sklearn import exceptions [as 別名]
# 或者: from sklearn.exceptions import NotFittedError [as 別名]
def predict(self, X):
"""Compute the predicted class.
Parameters
----------
X : numpy array or sparse matrix [n_samples, n_features]
Data.
Returns
-------
numpy array [n_samples]
Predicted class.
"""
if not self._is_fitted:
raise NotFittedError("Call fit before predict!")
return self.classes_[self.predict_proba(X).argmax(axis=1)]
示例11: _fit_models
# 需要導入模塊: from sklearn import exceptions [as 別名]
# 或者: from sklearn.exceptions import NotFittedError [as 別名]
def _fit_models(vmodel, tmodel, x, model_is_fit):
if model_is_fit==True:
return
if vmodel is not None:
try:
check_is_fitted(vmodel, ['vocabulary_'])
except NotFittedError:
vmodel.fit(np.vstack(x).ravel())
if tmodel is not None:
try:
check_is_fitted(tmodel, ['components_'])
except NotFittedError:
if isinstance(tmodel, Pipeline):
tmodel.fit(np.vstack(x).ravel())
else:
tmodel.fit(vmodel.transform(np.vstack(x).ravel()))
示例12: test_event_transfer
# 需要導入模塊: from sklearn import exceptions [as 別名]
# 或者: from sklearn.exceptions import NotFittedError [as 別名]
def test_event_transfer():
es = EventSegment(2)
sample_data = np.asarray([[1, 1, 1, 0, 0, 0, 0], [0, 0, 0, 1, 1, 1, 1]])
with pytest.raises(NotFittedError):
seg = es.find_events(sample_data.T)[0]
pytest.fail("Should need to set variance")
with pytest.raises(NotFittedError):
seg = es.find_events(sample_data.T, np.asarray([1, 1]))[0]
pytest.fail("Should need to set patterns")
es.set_event_patterns(np.asarray([[1, 0], [0, 1]]))
seg = es.find_events(sample_data.T, np.asarray([1, 1]))[0]
events = np.argmax(seg, axis=1)
assert np.array_equal(events, [0, 0, 0, 1, 1, 1, 1]),\
"Failed to correctly transfer two events to new data"
示例13: test_stack_copy_function_only_model
# 需要導入模塊: from sklearn import exceptions [as 別名]
# 或者: from sklearn.exceptions import NotFittedError [as 別名]
def test_stack_copy_function_only_model(self):
first_layer = Layer([LinearRegression(), LogisticRegression()])
second_layer = Layer([LinearRegression()])
model = Stack([first_layer, second_layer])
X = np.array([[1, 1], [1, 2], [2, 2], [2, 3]])
y = np.dot(X, np.array([1, 2])) + 3
model.fit(X, y)
model2 = model.copy()
gotError = False
try:
model2.predict([1, 2])
except(NotFittedError):
gotError = True
assert gotError, "Model failed the copy Test: When copying, a deep copy was produced"
示例14: test_stack_copy_function_model_and_preprocessor
# 需要導入模塊: from sklearn import exceptions [as 別名]
# 或者: from sklearn.exceptions import NotFittedError [as 別名]
def test_stack_copy_function_model_and_preprocessor(self):
first_layer = Layer(models=[LogisticRegression(), LinearRegression()], preprocessors=[MinMaxScaler(), None])
second_layer = Layer([LinearRegression()], preprocessors=[MinMaxScaler()])
model = Stack([first_layer, second_layer])
X = np.array([[1, 1], [1, 2], [2, 2], [2, 3]])
y = np.dot(X, np.array([1, 2])) + 3
model.fit(X, y)
model2 = model.copy()
gotError = False
try:
model2.predict([1,2])
except(NotFittedError):
gotError = True
assert gotError, "Model failed the copy Test: When copying, a deep copy was produced"
示例15: test_nested_model
# 需要導入模塊: from sklearn import exceptions [as 別名]
# 或者: from sklearn.exceptions import NotFittedError [as 別名]
def test_nested_model(teardown):
x_data = iris.data
y_t_data = iris.target
# Sub-model
x = Input()
y_t = Input()
h = PCA(n_components=2)(x)
y = LogisticRegression()(h, y_t)
submodel = Model(x, y, y_t)
# Model
x = Input()
y_t = Input()
y = submodel(x, y_t)
model = Model(x, y, y_t)
with raises_with_cause(RuntimeError, NotFittedError):
submodel.predict(x_data)
model.fit(x_data, y_t_data)
y_pred = model.predict(x_data)
y_pred_sub = submodel.predict(x_data)
assert_array_equal(y_pred, y_pred_sub)