本文整理匯總了Python中sklearn.exceptions.DataConversionWarning方法的典型用法代碼示例。如果您正苦於以下問題:Python exceptions.DataConversionWarning方法的具體用法?Python exceptions.DataConversionWarning怎麽用?Python exceptions.DataConversionWarning使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類sklearn.exceptions
的用法示例。
在下文中一共展示了exceptions.DataConversionWarning方法的9個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: pairwise_distances
# 需要導入模塊: from sklearn import exceptions [as 別名]
# 或者: from sklearn.exceptions import DataConversionWarning [as 別名]
def pairwise_distances(X, Y=None, metric="euclidean", **kwds):
if (metric not in _VALID_METRICS and
not callable(metric) and metric != "precomputed"):
raise ValueError("Unknown metric %s. "
"Valid metrics are %s, or 'precomputed', or a "
"callable" % (metric, _VALID_METRICS))
if metric == "precomputed":
X, _ = PairwiseDistances.check_pairwise_arrays(X, Y, precomputed=True)
whom = ("`pairwise_distances`. Precomputed distance "
" need to have non-negative values.")
X = check_non_negative(X, whom=whom)
return X
elif metric in PAIRWISE_DISTANCE_FUNCTIONS:
func = PAIRWISE_DISTANCE_FUNCTIONS[metric]
else:
# including when metric is callable
dtype = bool if metric in PAIRWISE_BOOLEAN_FUNCTIONS else None
if (dtype == bool and
(X.dtype != bool or (Y is not None and Y.dtype != bool)) and
DataConversionWarning is not None):
msg = "Data was converted to boolean for metric %s" % metric
warnings.warn(msg, DataConversionWarning)
X, Y = PairwiseDistances.check_pairwise_arrays(X, Y, dtype=dtype)
if X is Y:
return distance.squareform(distance.pdist(X, metric=metric, **kwds))
func = partial(distance.cdist, metric=metric, **kwds)
return func(X, Y, **kwds)
示例2: test_shape_y
# 需要導入模塊: from sklearn import exceptions [as 別名]
# 或者: from sklearn.exceptions import DataConversionWarning [as 別名]
def test_shape_y():
# Test with float class labels.
clf = GradientBoostingClassifier(n_estimators=100, random_state=1)
y_ = np.asarray(y, dtype=np.int32)
y_ = y_[:, np.newaxis]
# This will raise a DataConversionWarning that we want to
# "always" raise, elsewhere the warnings gets ignored in the
# later tests, and the tests that check for this warning fail
assert_warns(DataConversionWarning, clf.fit, X, y_)
assert_array_equal(clf.predict(T), true_result)
assert_equal(100, len(clf.estimators_))
示例3: test_pairwise_boolean_distance
# 需要導入模塊: from sklearn import exceptions [as 別名]
# 或者: from sklearn.exceptions import DataConversionWarning [as 別名]
def test_pairwise_boolean_distance(metric):
# test that we convert to boolean arrays for boolean distances
rng = np.random.RandomState(0)
X = rng.randn(5, 4)
Y = X.copy()
Y[0, 0] = 1 - Y[0, 0]
# ignore conversion to boolean in pairwise_distances
with ignore_warnings(category=DataConversionWarning):
for Z in [Y, None]:
res = pairwise_distances(X, Z, metric=metric)
res[np.isnan(res)] = 0
assert np.sum(res != 0) == 0
# non-boolean arrays are converted to boolean for boolean
# distance metrics with a data conversion warning
msg = "Data was converted to boolean for metric %s" % metric
with pytest.warns(DataConversionWarning, match=msg):
pairwise_distances(X, metric=metric)
# Check that the warning is raised if X is boolean by Y is not boolean:
with pytest.warns(DataConversionWarning, match=msg):
pairwise_distances(X.astype(bool), Y=Y, metric=metric)
# Check that no warning is raised if X is already boolean and Y is None:
with pytest.warns(None) as records:
pairwise_distances(X.astype(bool), metric=metric)
assert len(records) == 0
示例4: test_check_dataframe_warns_on_dtype
# 需要導入模塊: from sklearn import exceptions [as 別名]
# 或者: from sklearn.exceptions import DataConversionWarning [as 別名]
def test_check_dataframe_warns_on_dtype():
# Check that warn_on_dtype also works for DataFrames.
# https://github.com/scikit-learn/scikit-learn/issues/10948
pd = importorskip("pandas")
df = pd.DataFrame([[1, 2, 3], [4, 5, 6]], dtype=object)
assert_warns_message(DataConversionWarning,
"Data with input dtype object were all converted to "
"float64.",
check_array, df, dtype=np.float64, warn_on_dtype=True)
assert_warns(DataConversionWarning, check_array, df,
dtype='numeric', warn_on_dtype=True)
with pytest.warns(None) as record:
warnings.simplefilter("ignore", DeprecationWarning) # 0.23
check_array(df, dtype='object', warn_on_dtype=True)
assert len(record) == 0
# Also check that it raises a warning for mixed dtypes in a DataFrame.
df_mixed = pd.DataFrame([['1', 2, 3], ['4', 5, 6]])
assert_warns(DataConversionWarning, check_array, df_mixed,
dtype=np.float64, warn_on_dtype=True)
assert_warns(DataConversionWarning, check_array, df_mixed,
dtype='numeric', warn_on_dtype=True)
assert_warns(DataConversionWarning, check_array, df_mixed,
dtype=object, warn_on_dtype=True)
# Even with numerical dtypes, a conversion can be made because dtypes are
# uniformized throughout the array.
df_mixed_numeric = pd.DataFrame([[1., 2, 3], [4., 5, 6]])
assert_warns(DataConversionWarning, check_array, df_mixed_numeric,
dtype='numeric', warn_on_dtype=True)
with pytest.warns(None) as record:
warnings.simplefilter("ignore", DeprecationWarning) # 0.23
check_array(df_mixed_numeric.astype(int),
dtype='numeric', warn_on_dtype=True)
assert len(record) == 0
示例5: check_supervised_y_2d
# 需要導入模塊: from sklearn import exceptions [as 別名]
# 或者: from sklearn.exceptions import DataConversionWarning [as 別名]
def check_supervised_y_2d(name, estimator_orig):
tags = estimator_orig._get_tags()
X, y = _create_small_ts_dataset()
if tags['binary_only']:
X = X[y != 2]
y = y[y != 2]
estimator = clone(estimator_orig)
set_random_state(estimator)
# fit
estimator.fit(X, y)
y_pred = estimator.predict(X)
set_random_state(estimator)
# Check that when a 2D y is given, a DataConversionWarning is
# raised
with warnings.catch_warnings(record=True) as w:
warnings.simplefilter("always", DataConversionWarning)
warnings.simplefilter("ignore", RuntimeWarning)
estimator.fit(X, y[:, np.newaxis])
y_pred_2d = estimator.predict(X)
msg = "expected 1 DataConversionWarning, got: %s" % (
", ".join([str(w_x) for w_x in w]))
if not tags['multioutput'] and name not in ['TimeSeriesSVR']:
# check that we warned if we don't support multi-output
assert len(w) > 0, msg
assert "DataConversionWarning('A column-vector y" \
" was passed when a 1d array was expected" in msg
assert_allclose(y_pred.ravel(), y_pred_2d.ravel())
示例6: check_supervised_y_2d
# 需要導入模塊: from sklearn import exceptions [as 別名]
# 或者: from sklearn.exceptions import DataConversionWarning [as 別名]
def check_supervised_y_2d(name, estimator_orig):
if "MultiTask" in name:
# These only work on 2d, so this test makes no sense
return
rnd = np.random.RandomState(0)
X = rnd.uniform(size=(10, 3))
y = np.arange(10) % 3
estimator = clone(estimator_orig)
set_random_state(estimator)
# fit
estimator.fit(X, y)
y_pred = estimator.predict(X)
set_random_state(estimator)
# Check that when a 2D y is given, a DataConversionWarning is
# raised
with warnings.catch_warnings(record=True) as w:
warnings.simplefilter("always", DataConversionWarning)
warnings.simplefilter("ignore", RuntimeWarning)
estimator.fit(X, y[:, np.newaxis])
y_pred_2d = estimator.predict(X)
msg = "expected 1 DataConversionWarning, got: %s" % (
", ".join([str(w_x) for w_x in w]))
if name not in MULTI_OUTPUT:
# check that we warned if we don't support multi-output
assert_greater(len(w), 0, msg)
assert_true("DataConversionWarning('A column-vector y"
" was passed when a 1d array was expected" in msg)
assert_allclose(y_pred.ravel(), y_pred_2d.ravel())
示例7: check_supervised_y_2d
# 需要導入模塊: from sklearn import exceptions [as 別名]
# 或者: from sklearn.exceptions import DataConversionWarning [as 別名]
def check_supervised_y_2d(name, estimator_orig):
if "MultiTask" in name:
# These only work on 2d, so this test makes no sense
return
if name == "GaussianProcess":
# Workaround: https://github.com/scikit-learn/scikit-learn/issues/10562
return
rnd = np.random.RandomState(0)
X = rnd.uniform(size=(10, 3))
y = np.arange(10) % 3
estimator = clone(estimator_orig)
set_random_state(estimator)
# fit
estimator.fit(X, y)
y_pred = estimator.predict(X)
set_random_state(estimator)
# Check that when a 2D y is given, a DataConversionWarning is
# raised
with warnings.catch_warnings(record=True) as w:
warnings.simplefilter("always", DataConversionWarning)
warnings.simplefilter("ignore", RuntimeWarning)
estimator.fit(X, y[:, np.newaxis])
y_pred_2d = estimator.predict(X)
msg = "expected 1 DataConversionWarning, got: %s" % (
", ".join([str(w_x) for w_x in w]))
if name not in MULTI_OUTPUT:
# check that we warned if we don't support multi-output
assert_greater(len(w), 0, msg)
assert_true("DataConversionWarning('A column-vector y"
" was passed when a 1d array was expected" in msg)
assert_allclose(y_pred.ravel(), y_pred_2d.ravel())
示例8: test_warning_scaling_integers
# 需要導入模塊: from sklearn import exceptions [as 別名]
# 或者: from sklearn.exceptions import DataConversionWarning [as 別名]
def test_warning_scaling_integers():
# Check warning when scaling integer data
X = np.array([[1, 2, 0],
[0, 0, 0]], dtype=np.uint8)
w = "Data with input dtype uint8 was converted to float64"
clean_warning_registry()
assert_warns_message(DataConversionWarning, w, scale, X)
assert_warns_message(DataConversionWarning, w, StandardScaler().fit, X)
assert_warns_message(DataConversionWarning, w, MinMaxScaler().fit, X)
示例9: testPairwiseDistancesExecution
# 需要導入模塊: from sklearn import exceptions [as 別名]
# 或者: from sklearn.exceptions import DataConversionWarning [as 別名]
def testPairwiseDistancesExecution(self):
raw_x = np.random.rand(20, 5)
raw_y = np.random.rand(21, 5)
x = mt.tensor(raw_x, chunk_size=11)
y = mt.tensor(raw_y, chunk_size=12)
d = pairwise_distances(x, y)
result = self.executor.execute_tensor(d, concat=True)[0]
expected = sk_pairwise_distances(raw_x, raw_y)
np.testing.assert_almost_equal(result, expected)
# test precomputed
d2 = d.copy()
d2[0, 0] = -1
d2 = pairwise_distances(d2, y, metric='precomputed')
with self.assertRaises(ValueError):
_ = self.executor.execute_tensor(d2, concat=True)[0]
# test cdist
weight = np.random.rand(5)
d = pairwise_distances(x, y, metric='wminkowski', p=3,
w=weight)
result = self.executor.execute_tensor(d, concat=True)[0]
expected = sk_pairwise_distances(raw_x, raw_y, metric='wminkowski',
p=3, w=weight)
np.testing.assert_almost_equal(result, expected)
# test pdist
d = pairwise_distances(x, metric='hamming')
result = self.executor.execute_tensor(d, concat=True)[0]
expected = sk_pairwise_distances(raw_x, metric='hamming')
np.testing.assert_almost_equal(result, expected)
# test function metric
m = lambda u, v: np.sqrt(((u-v)**2).sum())
d = pairwise_distances(x, y, metric=m)
result = self.executor.execute_tensor(d, concat=True)[0]
expected = sk_pairwise_distances(raw_x, raw_y, metric=m)
np.testing.assert_almost_equal(result, expected)
assert_warns(DataConversionWarning,
pairwise_distances, x, y, metric='jaccard')
with self.assertRaises(ValueError):
_ = pairwise_distances(x, y, metric='unknown')