當前位置: 首頁>>代碼示例>>Python>>正文


Python exceptions.ConvergenceWarning方法代碼示例

本文整理匯總了Python中sklearn.exceptions.ConvergenceWarning方法的典型用法代碼示例。如果您正苦於以下問題:Python exceptions.ConvergenceWarning方法的具體用法?Python exceptions.ConvergenceWarning怎麽用?Python exceptions.ConvergenceWarning使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在sklearn.exceptions的用法示例。


在下文中一共展示了exceptions.ConvergenceWarning方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: ensure_many_models

# 需要導入模塊: from sklearn import exceptions [as 別名]
# 或者: from sklearn.exceptions import ConvergenceWarning [as 別名]
def ensure_many_models(self):
        from sklearn.ensemble import GradientBoostingRegressor, RandomForestRegressor
        from sklearn.neural_network import MLPRegressor
        from sklearn.linear_model import ElasticNet, RANSACRegressor, HuberRegressor, PassiveAggressiveRegressor
        from sklearn.neighbors import KNeighborsRegressor
        from sklearn.svm import SVR, LinearSVR

        import warnings
        from sklearn.exceptions import ConvergenceWarning
        warnings.filterwarnings('ignore', category=ConvergenceWarning)

        for learner in [GradientBoostingRegressor, RandomForestRegressor, MLPRegressor,
                        ElasticNet, RANSACRegressor, HuberRegressor, PassiveAggressiveRegressor,
                        KNeighborsRegressor, SVR, LinearSVR]:
            learner = learner()
            learner_name = str(learner).split("(", maxsplit=1)[0]
            with self.subTest("Test fit using {learner}".format(learner=learner_name)):
                model = self.estimator.__class__(learner)
                model.fit(self.data_lin["X"], self.data_lin["a"], self.data_lin["y"])
                self.assertTrue(True)  # Fit did not crash 
開發者ID:IBM,項目名稱:causallib,代碼行數:22,代碼來源:test_standardization.py

示例2: test_convergence_warning

# 需要導入模塊: from sklearn import exceptions [as 別名]
# 或者: from sklearn.exceptions import ConvergenceWarning [as 別名]
def test_convergence_warning():
    # This is a non-regression test for #5774
    X = np.array([[1., 0.], [0., 1.], [1., 2.5]])
    y = np.array([0, 1, -1])
    mdl = label_propagation.LabelSpreading(kernel='rbf', max_iter=1)
    assert_warns(ConvergenceWarning, mdl.fit, X, y)
    assert_equal(mdl.n_iter_, mdl.max_iter)

    mdl = label_propagation.LabelPropagation(kernel='rbf', max_iter=1)
    assert_warns(ConvergenceWarning, mdl.fit, X, y)
    assert_equal(mdl.n_iter_, mdl.max_iter)

    mdl = label_propagation.LabelSpreading(kernel='rbf', max_iter=500)
    assert_no_warnings(mdl.fit, X, y)

    mdl = label_propagation.LabelPropagation(kernel='rbf', max_iter=500)
    assert_no_warnings(mdl.fit, X, y) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:19,代碼來源:test_label_propagation.py

示例3: test_alpha

# 需要導入模塊: from sklearn import exceptions [as 別名]
# 或者: from sklearn.exceptions import ConvergenceWarning [as 別名]
def test_alpha():
    # Test that larger alpha yields weights closer to zero
    X = X_digits_binary[:100]
    y = y_digits_binary[:100]

    alpha_vectors = []
    alpha_values = np.arange(2)
    absolute_sum = lambda x: np.sum(np.abs(x))

    for alpha in alpha_values:
        mlp = MLPClassifier(hidden_layer_sizes=10, alpha=alpha, random_state=1)
        with ignore_warnings(category=ConvergenceWarning):
            mlp.fit(X, y)
        alpha_vectors.append(np.array([absolute_sum(mlp.coefs_[0]),
                                       absolute_sum(mlp.coefs_[1])]))

    for i in range(len(alpha_values) - 1):
        assert (alpha_vectors[i] > alpha_vectors[i + 1]).all() 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:20,代碼來源:test_mlp.py

示例4: test_learning_rate_warmstart

# 需要導入模塊: from sklearn import exceptions [as 別名]
# 或者: from sklearn.exceptions import ConvergenceWarning [as 別名]
def test_learning_rate_warmstart():
    # Tests that warm_start reuse past solutions.
    X = [[3, 2], [1, 6], [5, 6], [-2, -4]]
    y = [1, 1, 1, 0]
    for learning_rate in ["invscaling", "constant"]:
        mlp = MLPClassifier(solver='sgd', hidden_layer_sizes=4,
                            learning_rate=learning_rate, max_iter=1,
                            power_t=0.25, warm_start=True)
        with ignore_warnings(category=ConvergenceWarning):
            mlp.fit(X, y)
            prev_eta = mlp._optimizer.learning_rate
            mlp.fit(X, y)
            post_eta = mlp._optimizer.learning_rate

        if learning_rate == 'constant':
            assert_equal(prev_eta, post_eta)
        elif learning_rate == 'invscaling':
            assert_equal(mlp.learning_rate_init / pow(8 + 1, mlp.power_t),
                         post_eta) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:21,代碼來源:test_mlp.py

示例5: test_partial_fit_classification

# 需要導入模塊: from sklearn import exceptions [as 別名]
# 或者: from sklearn.exceptions import ConvergenceWarning [as 別名]
def test_partial_fit_classification():
    # Test partial_fit on classification.
    # `partial_fit` should yield the same results as 'fit' for binary and
    # multi-class classification.
    for X, y in classification_datasets:
        X = X
        y = y
        mlp = MLPClassifier(solver='sgd', max_iter=100, random_state=1,
                            tol=0, alpha=1e-5, learning_rate_init=0.2)

        with ignore_warnings(category=ConvergenceWarning):
            mlp.fit(X, y)
        pred1 = mlp.predict(X)
        mlp = MLPClassifier(solver='sgd', random_state=1, alpha=1e-5,
                            learning_rate_init=0.2)
        for i in range(100):
            mlp.partial_fit(X, y, classes=np.unique(y))
        pred2 = mlp.predict(X)
        assert_array_equal(pred1, pred2)
        assert_greater(mlp.score(X, y), 0.95) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:22,代碼來源:test_mlp.py

示例6: test_predict_proba_multiclass

# 需要導入模塊: from sklearn import exceptions [as 別名]
# 或者: from sklearn.exceptions import ConvergenceWarning [as 別名]
def test_predict_proba_multiclass():
    # Test that predict_proba works as expected for multi class.
    X = X_digits_multi[:10]
    y = y_digits_multi[:10]

    clf = MLPClassifier(hidden_layer_sizes=5)
    with ignore_warnings(category=ConvergenceWarning):
        clf.fit(X, y)
    y_proba = clf.predict_proba(X)
    y_log_proba = clf.predict_log_proba(X)

    (n_samples, n_classes) = y.shape[0], np.unique(y).size

    proba_max = y_proba.argmax(axis=1)
    proba_log_max = y_log_proba.argmax(axis=1)

    assert_equal(y_proba.shape, (n_samples, n_classes))
    assert_array_equal(proba_max, proba_log_max)
    assert_array_equal(y_log_proba, np.log(y_proba)) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:21,代碼來源:test_mlp.py

示例7: test_gaussian_mixture_fit_convergence_warning

# 需要導入模塊: from sklearn import exceptions [as 別名]
# 或者: from sklearn.exceptions import ConvergenceWarning [as 別名]
def test_gaussian_mixture_fit_convergence_warning():
    rng = np.random.RandomState(0)
    rand_data = RandomData(rng, scale=1)
    n_components = rand_data.n_components
    max_iter = 1
    for covar_type in COVARIANCE_TYPE:
        X = rand_data.X[covar_type]
        g = GaussianMixture(n_components=n_components, n_init=1,
                            max_iter=max_iter, reg_covar=0, random_state=rng,
                            covariance_type=covar_type)
        assert_warns_message(ConvergenceWarning,
                             'Initialization %d did not converge. '
                             'Try different init parameters, '
                             'or increase max_iter, tol '
                             'or check for degenerate data.'
                             % max_iter, g.fit, X) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:18,代碼來源:test_gaussian_mixture.py

示例8: test_lars_cv_max_iter

# 需要導入模塊: from sklearn import exceptions [as 別名]
# 或者: from sklearn.exceptions import ConvergenceWarning [as 別名]
def test_lars_cv_max_iter(recwarn):
    warnings.simplefilter('always')
    with np.errstate(divide='raise', invalid='raise'):
        X = diabetes.data
        y = diabetes.target
        rng = np.random.RandomState(42)
        x = rng.randn(len(y))
        X = diabetes.data
        X = np.c_[X, x, x]  # add correlated features
        lars_cv = linear_model.LassoLarsCV(max_iter=5, cv=5)
        lars_cv.fit(X, y)
    # Check that there is no warning in general and no ConvergenceWarning
    # in particular.
    # Materialize the string representation of the warning to get a more
    # informative error message in case of AssertionError.
    recorded_warnings = [str(w) for w in recwarn]
    assert recorded_warnings == [] 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:19,代碼來源:test_least_angle.py

示例9: test_ransac_warn_exceed_max_skips

# 需要導入模塊: from sklearn import exceptions [as 別名]
# 或者: from sklearn.exceptions import ConvergenceWarning [as 別名]
def test_ransac_warn_exceed_max_skips():
    global cause_skip
    cause_skip = False

    def is_data_valid(X, y):
        global cause_skip
        if not cause_skip:
            cause_skip = True
            return True
        else:
            return False

    base_estimator = LinearRegression()
    ransac_estimator = RANSACRegressor(base_estimator,
                                       is_data_valid=is_data_valid,
                                       max_skips=3,
                                       max_trials=5)

    assert_warns(ConvergenceWarning, ransac_estimator.fit, X, y)
    assert_equal(ransac_estimator.n_skips_no_inliers_, 0)
    assert_equal(ransac_estimator.n_skips_invalid_data_, 4)
    assert_equal(ransac_estimator.n_skips_invalid_model_, 0) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:24,代碼來源:test_ransac.py

示例10: test_n_clusters

# 需要導入模塊: from sklearn import exceptions [as 別名]
# 或者: from sklearn.exceptions import ConvergenceWarning [as 別名]
def test_n_clusters():
    # Test that n_clusters param works properly
    X, y = make_blobs(n_samples=100, centers=10)
    brc1 = Birch(n_clusters=10)
    brc1.fit(X)
    assert_greater(len(brc1.subcluster_centers_), 10)
    assert_equal(len(np.unique(brc1.labels_)), 10)

    # Test that n_clusters = Agglomerative Clustering gives
    # the same results.
    gc = AgglomerativeClustering(n_clusters=10)
    brc2 = Birch(n_clusters=gc)
    brc2.fit(X)
    assert_array_equal(brc1.subcluster_labels_, brc2.subcluster_labels_)
    assert_array_equal(brc1.labels_, brc2.labels_)

    # Test that the wrong global clustering step raises an Error.
    clf = ElasticNet()
    brc3 = Birch(n_clusters=clf)
    assert_raises(ValueError, brc3.fit, X)

    # Test that a small number of clusters raises a warning.
    brc4 = Birch(threshold=10000.)
    assert_warns(ConvergenceWarning, brc4.fit, X) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:26,代碼來源:test_birch.py

示例11: test_less_centers_than_unique_points

# 需要導入模塊: from sklearn import exceptions [as 別名]
# 或者: from sklearn.exceptions import ConvergenceWarning [as 別名]
def test_less_centers_than_unique_points():
    X = np.asarray([[0, 0],
                    [0, 1],
                    [1, 0],
                    [1, 0]])  # last point is duplicated

    km = KMeans(n_clusters=4).fit(X)

    # only three distinct points, so only three clusters
    # can have points assigned to them
    assert_equal(set(km.labels_), set(range(3)))

    # k_means should warn that fewer labels than cluster
    # centers have been used
    msg = ("Number of distinct clusters (3) found smaller than "
           "n_clusters (4). Possibly due to duplicate points in X.")
    assert_warns_message(ConvergenceWarning, msg, k_means, X,
                         sample_weight=None, n_clusters=4) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:20,代碼來源:test_k_means.py

示例12: test_fastica_convergence_fail

# 需要導入模塊: from sklearn import exceptions [as 別名]
# 或者: from sklearn.exceptions import ConvergenceWarning [as 別名]
def test_fastica_convergence_fail():
    # Test the FastICA algorithm on very simple data
    # (see test_non_square_fastica).
    # Ensure a ConvergenceWarning raised if the tolerance is sufficiently low.
    rng = np.random.RandomState(0)

    n_samples = 1000
    # Generate two sources:
    t = np.linspace(0, 100, n_samples)
    s1 = np.sin(t)
    s2 = np.ceil(np.sin(np.pi * t))
    s = np.c_[s1, s2].T
    center_and_norm(s)
    s1, s2 = s

    # Mixing matrix
    mixing = rng.randn(6, 2)
    m = np.dot(mixing, s)

    # Do fastICA with tolerance 0. to ensure failing convergence
    ica = FastICA(algorithm="parallel", n_components=2, random_state=rng,
                  max_iter=2, tol=0.)
    assert_warns(ConvergenceWarning, ica.fit, m.T) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:25,代碼來源:test_fastica.py

示例13: test_predict_proba_binary

# 需要導入模塊: from sklearn import exceptions [as 別名]
# 或者: from sklearn.exceptions import ConvergenceWarning [as 別名]
def test_predict_proba_binary():
    # Test that predict_proba works as expected for binary class.
    X = X_digits_binary[:50]
    y = y_digits_binary[:50]

    clf = MLPClassifier(hidden_layer_sizes=5)
    with ignore_warnings(category=ConvergenceWarning):
        clf.fit(X, y)
    y_proba = clf.predict_proba(X)
    y_log_proba = clf.predict_log_proba(X)

    (n_samples, n_classes) = y.shape[0], 2

    proba_max = y_proba.argmax(axis=1)
    proba_log_max = y_log_proba.argmax(axis=1)

    assert_equal(y_proba.shape, (n_samples, n_classes))
    assert_array_equal(proba_max, proba_log_max)
    assert_array_equal(y_log_proba, np.log(y_proba))

    assert_equal(roc_auc_score(y, y_proba[:, 1]), 1.0) 
開發者ID:alvarobartt,項目名稱:twitter-stock-recommendation,代碼行數:23,代碼來源:test_mlp.py

示例14: test_convergence_warning

# 需要導入模塊: from sklearn import exceptions [as 別名]
# 或者: from sklearn.exceptions import ConvergenceWarning [as 別名]
def test_convergence_warning():
    X, y = build_dataset(n_samples=10, n_features=10)
    tol = - 1  # gap canot be negative, a covnergence warning should be raised
    alpha_max = np.max(np.abs(X.T.dot(y))) / X.shape[0]
    clf = Lasso(alpha_max / 10, max_iter=1, max_epochs=100, tol=tol)

    with warnings.catch_warnings(record=True) as w:
        # Cause all warnings to always be triggered.
        warnings.simplefilter("always")
        clf.fit(X, y)
        assert len(w) == 1
        assert issubclass(w[-1].category, ConvergenceWarning) 
開發者ID:mathurinm,項目名稱:celer,代碼行數:14,代碼來源:test_lasso.py

示例15: testConvergenceWarning

# 需要導入模塊: from sklearn import exceptions [as 別名]
# 或者: from sklearn.exceptions import ConvergenceWarning [as 別名]
def testConvergenceWarning(self):
        # This is a non-regression test for #5774
        X = np.array([[1., 0.], [0., 1.], [1., 2.5]])
        y = np.array([0, 1, -1])

        mdl = LabelPropagation(kernel='rbf', max_iter=1)
        assert_warns(ConvergenceWarning, mdl.fit, X, y)
        assert mdl.n_iter_ == mdl.max_iter

        mdl = LabelPropagation(kernel='rbf', max_iter=500)
        assert_no_warnings(mdl.fit, X, y) 
開發者ID:mars-project,項目名稱:mars,代碼行數:13,代碼來源:test_label_propagation.py


注:本文中的sklearn.exceptions.ConvergenceWarning方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。