本文整理匯總了Python中sklearn.exceptions.ConvergenceWarning方法的典型用法代碼示例。如果您正苦於以下問題:Python exceptions.ConvergenceWarning方法的具體用法?Python exceptions.ConvergenceWarning怎麽用?Python exceptions.ConvergenceWarning使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類sklearn.exceptions
的用法示例。
在下文中一共展示了exceptions.ConvergenceWarning方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: ensure_many_models
# 需要導入模塊: from sklearn import exceptions [as 別名]
# 或者: from sklearn.exceptions import ConvergenceWarning [as 別名]
def ensure_many_models(self):
from sklearn.ensemble import GradientBoostingRegressor, RandomForestRegressor
from sklearn.neural_network import MLPRegressor
from sklearn.linear_model import ElasticNet, RANSACRegressor, HuberRegressor, PassiveAggressiveRegressor
from sklearn.neighbors import KNeighborsRegressor
from sklearn.svm import SVR, LinearSVR
import warnings
from sklearn.exceptions import ConvergenceWarning
warnings.filterwarnings('ignore', category=ConvergenceWarning)
for learner in [GradientBoostingRegressor, RandomForestRegressor, MLPRegressor,
ElasticNet, RANSACRegressor, HuberRegressor, PassiveAggressiveRegressor,
KNeighborsRegressor, SVR, LinearSVR]:
learner = learner()
learner_name = str(learner).split("(", maxsplit=1)[0]
with self.subTest("Test fit using {learner}".format(learner=learner_name)):
model = self.estimator.__class__(learner)
model.fit(self.data_lin["X"], self.data_lin["a"], self.data_lin["y"])
self.assertTrue(True) # Fit did not crash
示例2: test_convergence_warning
# 需要導入模塊: from sklearn import exceptions [as 別名]
# 或者: from sklearn.exceptions import ConvergenceWarning [as 別名]
def test_convergence_warning():
# This is a non-regression test for #5774
X = np.array([[1., 0.], [0., 1.], [1., 2.5]])
y = np.array([0, 1, -1])
mdl = label_propagation.LabelSpreading(kernel='rbf', max_iter=1)
assert_warns(ConvergenceWarning, mdl.fit, X, y)
assert_equal(mdl.n_iter_, mdl.max_iter)
mdl = label_propagation.LabelPropagation(kernel='rbf', max_iter=1)
assert_warns(ConvergenceWarning, mdl.fit, X, y)
assert_equal(mdl.n_iter_, mdl.max_iter)
mdl = label_propagation.LabelSpreading(kernel='rbf', max_iter=500)
assert_no_warnings(mdl.fit, X, y)
mdl = label_propagation.LabelPropagation(kernel='rbf', max_iter=500)
assert_no_warnings(mdl.fit, X, y)
示例3: test_alpha
# 需要導入模塊: from sklearn import exceptions [as 別名]
# 或者: from sklearn.exceptions import ConvergenceWarning [as 別名]
def test_alpha():
# Test that larger alpha yields weights closer to zero
X = X_digits_binary[:100]
y = y_digits_binary[:100]
alpha_vectors = []
alpha_values = np.arange(2)
absolute_sum = lambda x: np.sum(np.abs(x))
for alpha in alpha_values:
mlp = MLPClassifier(hidden_layer_sizes=10, alpha=alpha, random_state=1)
with ignore_warnings(category=ConvergenceWarning):
mlp.fit(X, y)
alpha_vectors.append(np.array([absolute_sum(mlp.coefs_[0]),
absolute_sum(mlp.coefs_[1])]))
for i in range(len(alpha_values) - 1):
assert (alpha_vectors[i] > alpha_vectors[i + 1]).all()
示例4: test_learning_rate_warmstart
# 需要導入模塊: from sklearn import exceptions [as 別名]
# 或者: from sklearn.exceptions import ConvergenceWarning [as 別名]
def test_learning_rate_warmstart():
# Tests that warm_start reuse past solutions.
X = [[3, 2], [1, 6], [5, 6], [-2, -4]]
y = [1, 1, 1, 0]
for learning_rate in ["invscaling", "constant"]:
mlp = MLPClassifier(solver='sgd', hidden_layer_sizes=4,
learning_rate=learning_rate, max_iter=1,
power_t=0.25, warm_start=True)
with ignore_warnings(category=ConvergenceWarning):
mlp.fit(X, y)
prev_eta = mlp._optimizer.learning_rate
mlp.fit(X, y)
post_eta = mlp._optimizer.learning_rate
if learning_rate == 'constant':
assert_equal(prev_eta, post_eta)
elif learning_rate == 'invscaling':
assert_equal(mlp.learning_rate_init / pow(8 + 1, mlp.power_t),
post_eta)
示例5: test_partial_fit_classification
# 需要導入模塊: from sklearn import exceptions [as 別名]
# 或者: from sklearn.exceptions import ConvergenceWarning [as 別名]
def test_partial_fit_classification():
# Test partial_fit on classification.
# `partial_fit` should yield the same results as 'fit' for binary and
# multi-class classification.
for X, y in classification_datasets:
X = X
y = y
mlp = MLPClassifier(solver='sgd', max_iter=100, random_state=1,
tol=0, alpha=1e-5, learning_rate_init=0.2)
with ignore_warnings(category=ConvergenceWarning):
mlp.fit(X, y)
pred1 = mlp.predict(X)
mlp = MLPClassifier(solver='sgd', random_state=1, alpha=1e-5,
learning_rate_init=0.2)
for i in range(100):
mlp.partial_fit(X, y, classes=np.unique(y))
pred2 = mlp.predict(X)
assert_array_equal(pred1, pred2)
assert_greater(mlp.score(X, y), 0.95)
示例6: test_predict_proba_multiclass
# 需要導入模塊: from sklearn import exceptions [as 別名]
# 或者: from sklearn.exceptions import ConvergenceWarning [as 別名]
def test_predict_proba_multiclass():
# Test that predict_proba works as expected for multi class.
X = X_digits_multi[:10]
y = y_digits_multi[:10]
clf = MLPClassifier(hidden_layer_sizes=5)
with ignore_warnings(category=ConvergenceWarning):
clf.fit(X, y)
y_proba = clf.predict_proba(X)
y_log_proba = clf.predict_log_proba(X)
(n_samples, n_classes) = y.shape[0], np.unique(y).size
proba_max = y_proba.argmax(axis=1)
proba_log_max = y_log_proba.argmax(axis=1)
assert_equal(y_proba.shape, (n_samples, n_classes))
assert_array_equal(proba_max, proba_log_max)
assert_array_equal(y_log_proba, np.log(y_proba))
示例7: test_gaussian_mixture_fit_convergence_warning
# 需要導入模塊: from sklearn import exceptions [as 別名]
# 或者: from sklearn.exceptions import ConvergenceWarning [as 別名]
def test_gaussian_mixture_fit_convergence_warning():
rng = np.random.RandomState(0)
rand_data = RandomData(rng, scale=1)
n_components = rand_data.n_components
max_iter = 1
for covar_type in COVARIANCE_TYPE:
X = rand_data.X[covar_type]
g = GaussianMixture(n_components=n_components, n_init=1,
max_iter=max_iter, reg_covar=0, random_state=rng,
covariance_type=covar_type)
assert_warns_message(ConvergenceWarning,
'Initialization %d did not converge. '
'Try different init parameters, '
'or increase max_iter, tol '
'or check for degenerate data.'
% max_iter, g.fit, X)
示例8: test_lars_cv_max_iter
# 需要導入模塊: from sklearn import exceptions [as 別名]
# 或者: from sklearn.exceptions import ConvergenceWarning [as 別名]
def test_lars_cv_max_iter(recwarn):
warnings.simplefilter('always')
with np.errstate(divide='raise', invalid='raise'):
X = diabetes.data
y = diabetes.target
rng = np.random.RandomState(42)
x = rng.randn(len(y))
X = diabetes.data
X = np.c_[X, x, x] # add correlated features
lars_cv = linear_model.LassoLarsCV(max_iter=5, cv=5)
lars_cv.fit(X, y)
# Check that there is no warning in general and no ConvergenceWarning
# in particular.
# Materialize the string representation of the warning to get a more
# informative error message in case of AssertionError.
recorded_warnings = [str(w) for w in recwarn]
assert recorded_warnings == []
示例9: test_ransac_warn_exceed_max_skips
# 需要導入模塊: from sklearn import exceptions [as 別名]
# 或者: from sklearn.exceptions import ConvergenceWarning [as 別名]
def test_ransac_warn_exceed_max_skips():
global cause_skip
cause_skip = False
def is_data_valid(X, y):
global cause_skip
if not cause_skip:
cause_skip = True
return True
else:
return False
base_estimator = LinearRegression()
ransac_estimator = RANSACRegressor(base_estimator,
is_data_valid=is_data_valid,
max_skips=3,
max_trials=5)
assert_warns(ConvergenceWarning, ransac_estimator.fit, X, y)
assert_equal(ransac_estimator.n_skips_no_inliers_, 0)
assert_equal(ransac_estimator.n_skips_invalid_data_, 4)
assert_equal(ransac_estimator.n_skips_invalid_model_, 0)
示例10: test_n_clusters
# 需要導入模塊: from sklearn import exceptions [as 別名]
# 或者: from sklearn.exceptions import ConvergenceWarning [as 別名]
def test_n_clusters():
# Test that n_clusters param works properly
X, y = make_blobs(n_samples=100, centers=10)
brc1 = Birch(n_clusters=10)
brc1.fit(X)
assert_greater(len(brc1.subcluster_centers_), 10)
assert_equal(len(np.unique(brc1.labels_)), 10)
# Test that n_clusters = Agglomerative Clustering gives
# the same results.
gc = AgglomerativeClustering(n_clusters=10)
brc2 = Birch(n_clusters=gc)
brc2.fit(X)
assert_array_equal(brc1.subcluster_labels_, brc2.subcluster_labels_)
assert_array_equal(brc1.labels_, brc2.labels_)
# Test that the wrong global clustering step raises an Error.
clf = ElasticNet()
brc3 = Birch(n_clusters=clf)
assert_raises(ValueError, brc3.fit, X)
# Test that a small number of clusters raises a warning.
brc4 = Birch(threshold=10000.)
assert_warns(ConvergenceWarning, brc4.fit, X)
示例11: test_less_centers_than_unique_points
# 需要導入模塊: from sklearn import exceptions [as 別名]
# 或者: from sklearn.exceptions import ConvergenceWarning [as 別名]
def test_less_centers_than_unique_points():
X = np.asarray([[0, 0],
[0, 1],
[1, 0],
[1, 0]]) # last point is duplicated
km = KMeans(n_clusters=4).fit(X)
# only three distinct points, so only three clusters
# can have points assigned to them
assert_equal(set(km.labels_), set(range(3)))
# k_means should warn that fewer labels than cluster
# centers have been used
msg = ("Number of distinct clusters (3) found smaller than "
"n_clusters (4). Possibly due to duplicate points in X.")
assert_warns_message(ConvergenceWarning, msg, k_means, X,
sample_weight=None, n_clusters=4)
示例12: test_fastica_convergence_fail
# 需要導入模塊: from sklearn import exceptions [as 別名]
# 或者: from sklearn.exceptions import ConvergenceWarning [as 別名]
def test_fastica_convergence_fail():
# Test the FastICA algorithm on very simple data
# (see test_non_square_fastica).
# Ensure a ConvergenceWarning raised if the tolerance is sufficiently low.
rng = np.random.RandomState(0)
n_samples = 1000
# Generate two sources:
t = np.linspace(0, 100, n_samples)
s1 = np.sin(t)
s2 = np.ceil(np.sin(np.pi * t))
s = np.c_[s1, s2].T
center_and_norm(s)
s1, s2 = s
# Mixing matrix
mixing = rng.randn(6, 2)
m = np.dot(mixing, s)
# Do fastICA with tolerance 0. to ensure failing convergence
ica = FastICA(algorithm="parallel", n_components=2, random_state=rng,
max_iter=2, tol=0.)
assert_warns(ConvergenceWarning, ica.fit, m.T)
示例13: test_predict_proba_binary
# 需要導入模塊: from sklearn import exceptions [as 別名]
# 或者: from sklearn.exceptions import ConvergenceWarning [as 別名]
def test_predict_proba_binary():
# Test that predict_proba works as expected for binary class.
X = X_digits_binary[:50]
y = y_digits_binary[:50]
clf = MLPClassifier(hidden_layer_sizes=5)
with ignore_warnings(category=ConvergenceWarning):
clf.fit(X, y)
y_proba = clf.predict_proba(X)
y_log_proba = clf.predict_log_proba(X)
(n_samples, n_classes) = y.shape[0], 2
proba_max = y_proba.argmax(axis=1)
proba_log_max = y_log_proba.argmax(axis=1)
assert_equal(y_proba.shape, (n_samples, n_classes))
assert_array_equal(proba_max, proba_log_max)
assert_array_equal(y_log_proba, np.log(y_proba))
assert_equal(roc_auc_score(y, y_proba[:, 1]), 1.0)
示例14: test_convergence_warning
# 需要導入模塊: from sklearn import exceptions [as 別名]
# 或者: from sklearn.exceptions import ConvergenceWarning [as 別名]
def test_convergence_warning():
X, y = build_dataset(n_samples=10, n_features=10)
tol = - 1 # gap canot be negative, a covnergence warning should be raised
alpha_max = np.max(np.abs(X.T.dot(y))) / X.shape[0]
clf = Lasso(alpha_max / 10, max_iter=1, max_epochs=100, tol=tol)
with warnings.catch_warnings(record=True) as w:
# Cause all warnings to always be triggered.
warnings.simplefilter("always")
clf.fit(X, y)
assert len(w) == 1
assert issubclass(w[-1].category, ConvergenceWarning)
示例15: testConvergenceWarning
# 需要導入模塊: from sklearn import exceptions [as 別名]
# 或者: from sklearn.exceptions import ConvergenceWarning [as 別名]
def testConvergenceWarning(self):
# This is a non-regression test for #5774
X = np.array([[1., 0.], [0., 1.], [1., 2.5]])
y = np.array([0, 1, -1])
mdl = LabelPropagation(kernel='rbf', max_iter=1)
assert_warns(ConvergenceWarning, mdl.fit, X, y)
assert mdl.n_iter_ == mdl.max_iter
mdl = LabelPropagation(kernel='rbf', max_iter=500)
assert_no_warnings(mdl.fit, X, y)