本文整理匯總了Python中sklearn.ensemble方法的典型用法代碼示例。如果您正苦於以下問題:Python sklearn.ensemble方法的具體用法?Python sklearn.ensemble怎麽用?Python sklearn.ensemble使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類sklearn
的用法示例。
在下文中一共展示了sklearn.ensemble方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: __init__
# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import ensemble [as 別名]
def __init__(self,
base_classifier=None,
n_classifiers=100,
combination_rule='majority_vote'):
self.base_classifier = base_classifier
self.n_classifiers = n_classifiers
# using the sklearn implementation of bagging for now
self.sk_bagging = BaggingClassifier(base_estimator=base_classifier,
n_estimators=n_classifiers,
max_samples=1.0,
max_features=1.0)
self.ensemble = Ensemble()
self.combiner = Combiner(rule=combination_rule)
示例2: setUp
# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import ensemble [as 別名]
def setUp(self):
"""Set up common resources."""
def rf_model_builder(**model_params):
rf_params = {k: v for (k, v) in model_params.items() if k != 'model_dir'}
model_dir = model_params['model_dir']
sklearn_model = sklearn.ensemble.RandomForestRegressor(**rf_params)
return dc.models.SklearnModel(sklearn_model, model_dir)
self.rf_model_builder = rf_model_builder
self.train_dataset = dc.data.NumpyDataset(
X=np.random.rand(50, 5), y=np.random.rand(50, 1))
self.valid_dataset = dc.data.NumpyDataset(
X=np.random.rand(20, 5), y=np.random.rand(20, 1))
示例3: ensemble_regression
# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import ensemble [as 別名]
def ensemble_regression(self, scoring_metric='neg_mean_squared_error', model_by_name=None):
# TODO stub
self.validate_regression('Ensemble Regression')
raise HealthcareAIError('We apologize. An ensemble linear regression has not yet been implemented.')
示例4: init_classifier_impl
# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import ensemble [as 別名]
def init_classifier_impl(field_code: str, init_script: str):
if init_script is not None:
init_script = init_script.strip()
if not init_script:
from sklearn import tree as sklearn_tree
return sklearn_tree.DecisionTreeClassifier()
from sklearn import tree as sklearn_tree
from sklearn import neural_network as sklearn_neural_network
from sklearn import neighbors as sklearn_neighbors
from sklearn import svm as sklearn_svm
from sklearn import gaussian_process as sklearn_gaussian_process
from sklearn.gaussian_process import kernels as sklearn_gaussian_process_kernels
from sklearn import ensemble as sklearn_ensemble
from sklearn import naive_bayes as sklearn_naive_bayes
from sklearn import discriminant_analysis as sklearn_discriminant_analysis
from sklearn import linear_model as sklearn_linear_model
eval_locals = {
'sklearn_linear_model': sklearn_linear_model,
'sklearn_tree': sklearn_tree,
'sklearn_neural_network': sklearn_neural_network,
'sklearn_neighbors': sklearn_neighbors,
'sklearn_svm': sklearn_svm,
'sklearn_gaussian_process': sklearn_gaussian_process,
'sklearn_gaussian_process_kernels': sklearn_gaussian_process_kernels,
'sklearn_ensemble': sklearn_ensemble,
'sklearn_naive_bayes': sklearn_naive_bayes,
'sklearn_discriminant_analysis': sklearn_discriminant_analysis
}
return eval_script('classifier init script of field {0}'.format(field_code), init_script, eval_locals)
示例5: run_ensemble
# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import ensemble [as 別名]
def run_ensemble():
MODELS = [
'xgboost-0p576026_20190319-181720',
'keras-0p463293_20190319-185422'
]
ensemble(MODELS)
示例6: predict
# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import ensemble [as 別名]
def predict(self, X):
X = sklearn.utils.validation.check_array(
X, dtype=sklearn.tree._tree.DTYPE, order='C')
score = np.zeros((X.shape[0], 1))
estimators = self.estimators_
if self.estimators_fitted_ < len(estimators):
estimators = estimators[:self.estimators_fitted_]
sklearn.ensemble._gradient_boosting.predict_stages(
estimators, X, self.learning_rate, score)
return score.ravel()
示例7: iter_y_delta
# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import ensemble [as 別名]
def iter_y_delta(self, i, X):
assert i >= 0 and i < self.estimators_fitted_
X = sklearn.utils.validation.check_array(
X, dtype=sklearn.tree._tree.DTYPE, order='C')
score = np.zeros((X.shape[0], 1))
sklearn.ensemble._gradient_boosting.predict_stage(
self.estimators_, i, X, self.learning_rate, score)
return score.ravel()
示例8: feature_importances
# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import ensemble [as 別名]
def feature_importances(X,y):
# the output does not stable because of the randomness
# Build a classification task using 3 informative features
#X, y = make_classification(n_samples=1000,n_features=10,n_informative=3,n_redundant=0,n_repeated=0,n_classes=2,n_state=0,shuffle=False)
# Build a forest and compute the feature importances
from sklearn.ensemble import ExtraTreesClassifier
forest = ExtraTreesClassifier(n_estimators= 25, criterion = 'entropy' , random_state=None)
forest.fit(X, y)
importances = forest.feature_importances_
std = np.std([tree.feature_importances_ for tree in forest.estimators_],axis=0)
indices = np.argsort(importances)[::-1]
# print (indices)
# Print the feature ranking
print("Feature ranking:")
sum1 = 0.0
for f in range(80):
print("%d. feature %d (%f)" % (f + 1, indices[f], importances[indices[f]]))
sum1 = sum1 + importances[indices[f]]
print (sum1)
# Plot the feature importances of the forest
#width = 0.5
x_len = range(len(importances))
plt.figure()
plt.title("Feature importances")
plt.bar(x_len, importances[indices] ,color="r", yerr=std[indices], align="center")
plt.xticks(x_len, indices)
plt.xlim([-1, max(x_len)+1])
plt.show()
######################################READ DATA####################################################
示例9: transfer
# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import ensemble [as 別名]
def transfer(n):
td, vd, ts = data_loader.load_data(n, abstract=True, expanded=expanded)
classifiers = [
#sklearn.svm.SVC(),
#sklearn.svm.SVC(kernel="linear", C=0.1),
#sklearn.neighbors.KNeighborsClassifier(1),
#sklearn.tree.DecisionTreeClassifier(),
#sklearn.ensemble.RandomForestClassifier(max_depth=10, n_estimators=500, max_features=1),
sklearn.neural_network.MLPClassifier(alpha=1.0, hidden_layer_sizes=(300,), max_iter=500)
]
for clf in classifiers:
clf.fit(td[0], td[1])
print "\n{}: {}".format(type(clf).__name__, round(clf.score(vd[0], vd[1])*100, 2))
示例10: baselines
# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import ensemble [as 別名]
def baselines(n):
td, vd, ts = data_loader.load_data(n)
classifiers = [
sklearn.svm.SVC(C=1000),
sklearn.svm.SVC(kernel="linear", C=0.1),
sklearn.neighbors.KNeighborsClassifier(1),
sklearn.tree.DecisionTreeClassifier(),
sklearn.ensemble.RandomForestClassifier(max_depth=10, n_estimators=500, max_features=1),
sklearn.neural_network.MLPClassifier(alpha=1, hidden_layer_sizes=(500, 100))
]
for clf in classifiers:
clf.fit(td[0], td[1])
print "\n{}: {}".format(type(clf).__name__, round(clf.score(vd[0], vd[1])*100, 2))
示例11: fit
# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import ensemble [as 別名]
def fit(self, X, y):
self.ensemble = Ensemble()
for _ in range(self.n_classifiers):
# bootstrap
idx = np.random.choice(X.shape[0], X.shape[0], replace=True)
data, target = X[idx, :], y[idx]
classifier = sklearn.base.clone(self.base_classifier)
classifier.fit(data, target)
self.ensemble.add(classifier)
return
示例12: predict
# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import ensemble [as 別名]
def predict(self, X):
out = self.ensemble.output(X)
return self.combiner.combine(out)
示例13: ensemble_classification
# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import ensemble [as 別名]
def ensemble_classification(self, scoring_metric='roc_auc', trained_model_by_name=None):
"""
This provides a simple way to put data in and have healthcare.ai train
a few models and pick the best one for your data.
Args:
scoring_metric (str): The metric used to rank the models. Defaults
to 'roc_auc'
trained_model_by_name (dict): A dictionary of trained models to
compare for a custom ensemble
Returns:
TrainedSupervisedModel: The best TrainedSupervisedModel found.
"""
self.validate_classification('Ensemble Classification')
self.validate_score_metric_for_number_of_classes(scoring_metric)
score_by_name = {}
# Here is the default list of algorithms to try for the ensemble
# Adding an ensemble method is as easy as adding a new key:value pair
# in the `model_by_name` dictionary
if trained_model_by_name is None:
# TODO because these now all return TSMs it will be additionally
# slow by all the factor models.
# TODO Could these be trained separately then after the best is
# found, train the factor model and add to TSM?
trained_model_by_name = {
'KNN': self.knn(randomized_search=True, scoring_metric=scoring_metric),
'Logistic Regression': self.logistic_regression(randomized_search=True),
'Random Forest Classifier': self.random_forest_classifier(
trees=200,
randomized_search=True,
scoring_metric=scoring_metric)}
for name, model in trained_model_by_name.items():
# Unroll estimator from trained supervised model
estimator = hcai_tsm.get_estimator_from_trained_supervised_model(model)
# Get the score objects for the estimator
score = self.metrics(estimator)
self._console_log('{} algorithm: score = {}'.format(name, score))
# TODO this may need to ferret out each classification score separately
score_by_name[name] = score[scoring_metric]
sorted_names_and_scores = sorted(score_by_name.items(), key=lambda x: x[1])
best_algorithm_name, best_score = sorted_names_and_scores[-1]
best_model = trained_model_by_name[best_algorithm_name]
self._console_log('Based on the scoring metric {}, the best algorithm found is: {}'.format(scoring_metric,
best_algorithm_name))
self._console_log('{} {} = {}'.format(best_algorithm_name, scoring_metric, best_score))
return best_model
示例14: _estimator_params
# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import ensemble [as 別名]
def _estimator_params(pblm, clf_key):
est_type = clf_key.split('-')[0]
if est_type in {'RF', 'RandomForest'}:
est_kw1 = {
# 'max_depth': 4,
'bootstrap': True,
'class_weight': None,
'criterion': 'entropy',
'max_features': 'sqrt',
# 'max_features': None,
'min_samples_leaf': 5,
'min_samples_split': 2,
# 'n_estimators': 64,
'n_estimators': 256,
}
# Hack to only use missing values if we have the right sklearn
if 'missing_values' in ut.get_func_kwargs(sklearn.ensemble.RandomForestClassifier.__init__):
est_kw1['missing_values'] = np.nan
est_kw2 = {
'random_state': 3915904814,
'verbose': 0,
'n_jobs': -1,
}
elif est_type in {'SVC', 'SVM'}:
est_kw1 = dict(kernel='linear')
est_kw2 = {}
elif est_type in {'Logit', 'LogisticRegression'}:
est_kw1 = {}
est_kw2 = {}
elif est_type in {'MLP'}:
est_kw1 = dict(
activation='relu', alpha=1e-05, batch_size='auto',
beta_1=0.9, beta_2=0.999, early_stopping=False,
epsilon=1e-08, hidden_layer_sizes=(10, 10),
learning_rate='constant', learning_rate_init=0.001,
max_iter=200, momentum=0.9, nesterovs_momentum=True,
power_t=0.5, random_state=3915904814, shuffle=True,
solver='lbfgs', tol=0.0001, validation_fraction=0.1,
warm_start=False
)
est_kw2 = dict(verbose=False)
else:
raise KeyError('Unknown Estimator')
return est_kw1, est_kw2
示例15: _get_estimator
# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import ensemble [as 別名]
def _get_estimator(pblm, clf_key):
"""
Returns sklearn classifier
"""
tup = clf_key.split('-')
wrap_type = None if len(tup) == 1 else tup[1]
est_type = tup[0]
multiclass_wrapper = {
None: ut.identity,
'OVR': sklearn.multiclass.OneVsRestClassifier,
'OVO': sklearn.multiclass.OneVsOneClassifier,
}[wrap_type]
est_class = {
'RF': sklearn.ensemble.RandomForestClassifier,
'SVC': sklearn.svm.SVC,
'Logit': sklearn.linear_model.LogisticRegression,
'MLP': sklearn.neural_network.MLPClassifier,
}[est_type]
est_kw1, est_kw2 = pblm._estimator_params(est_type)
est_params = ut.merge_dicts(est_kw1, est_kw2)
# steps = []
# steps.append((est_type, est_class(**est_params)))
# if wrap_type is not None:
# steps.append((wrap_type, multiclass_wrapper))
if est_type == 'MLP':
def clf_partial():
pipe = sklearn.pipeline.Pipeline([
('inputer', sklearn.preprocessing.Imputer(
missing_values='NaN', strategy='mean', axis=0)),
# ('scale', sklearn.preprocessing.StandardScaler),
('est', est_class(**est_params)),
])
return multiclass_wrapper(pipe)
elif est_type == 'Logit':
def clf_partial():
pipe = sklearn.pipeline.Pipeline([
('inputer', sklearn.preprocessing.Imputer(
missing_values='NaN', strategy='mean', axis=0)),
('est', est_class(**est_params)),
])
return multiclass_wrapper(pipe)
else:
def clf_partial():
return multiclass_wrapper(est_class(**est_params))
return clf_partial