當前位置: 首頁>>代碼示例>>Python>>正文


Python sklearn.ensemble方法代碼示例

本文整理匯總了Python中sklearn.ensemble方法的典型用法代碼示例。如果您正苦於以下問題:Python sklearn.ensemble方法的具體用法?Python sklearn.ensemble怎麽用?Python sklearn.ensemble使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在sklearn的用法示例。


在下文中一共展示了sklearn.ensemble方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import ensemble [as 別名]
def __init__(self,
                 base_classifier=None,
                 n_classifiers=100,
                 combination_rule='majority_vote'):

        self.base_classifier = base_classifier
        self.n_classifiers = n_classifiers

        # using the sklearn implementation of bagging for now
        self.sk_bagging = BaggingClassifier(base_estimator=base_classifier,
                                            n_estimators=n_classifiers,
                                            max_samples=1.0,
                                            max_features=1.0)

        self.ensemble = Ensemble()
        self.combiner = Combiner(rule=combination_rule) 
開發者ID:viisar,項目名稱:brew,代碼行數:18,代碼來源:bagging.py

示例2: setUp

# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import ensemble [as 別名]
def setUp(self):
    """Set up common resources."""

    def rf_model_builder(**model_params):
      rf_params = {k: v for (k, v) in model_params.items() if k != 'model_dir'}
      model_dir = model_params['model_dir']
      sklearn_model = sklearn.ensemble.RandomForestRegressor(**rf_params)
      return dc.models.SklearnModel(sklearn_model, model_dir)

    self.rf_model_builder = rf_model_builder
    self.train_dataset = dc.data.NumpyDataset(
        X=np.random.rand(50, 5), y=np.random.rand(50, 1))
    self.valid_dataset = dc.data.NumpyDataset(
        X=np.random.rand(20, 5), y=np.random.rand(20, 1)) 
開發者ID:deepchem,項目名稱:deepchem,代碼行數:16,代碼來源:test_grid_hyperparam_opt.py

示例3: ensemble_regression

# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import ensemble [as 別名]
def ensemble_regression(self, scoring_metric='neg_mean_squared_error', model_by_name=None):
        # TODO stub
        self.validate_regression('Ensemble Regression')
        raise HealthcareAIError('We apologize. An ensemble linear regression has not yet been implemented.') 
開發者ID:HealthCatalyst,項目名稱:healthcareai-py,代碼行數:6,代碼來源:advanced_supvervised_model_trainer.py

示例4: init_classifier_impl

# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import ensemble [as 別名]
def init_classifier_impl(field_code: str, init_script: str):
    if init_script is not None:
        init_script = init_script.strip()

    if not init_script:
        from sklearn import tree as sklearn_tree
        return sklearn_tree.DecisionTreeClassifier()

    from sklearn import tree as sklearn_tree
    from sklearn import neural_network as sklearn_neural_network
    from sklearn import neighbors as sklearn_neighbors
    from sklearn import svm as sklearn_svm
    from sklearn import gaussian_process as sklearn_gaussian_process
    from sklearn.gaussian_process import kernels as sklearn_gaussian_process_kernels
    from sklearn import ensemble as sklearn_ensemble
    from sklearn import naive_bayes as sklearn_naive_bayes
    from sklearn import discriminant_analysis as sklearn_discriminant_analysis
    from sklearn import linear_model as sklearn_linear_model

    eval_locals = {
        'sklearn_linear_model': sklearn_linear_model,
        'sklearn_tree': sklearn_tree,
        'sklearn_neural_network': sklearn_neural_network,
        'sklearn_neighbors': sklearn_neighbors,
        'sklearn_svm': sklearn_svm,
        'sklearn_gaussian_process': sklearn_gaussian_process,
        'sklearn_gaussian_process_kernels': sklearn_gaussian_process_kernels,
        'sklearn_ensemble': sklearn_ensemble,
        'sklearn_naive_bayes': sklearn_naive_bayes,
        'sklearn_discriminant_analysis': sklearn_discriminant_analysis
    }
    return eval_script('classifier init script of field {0}'.format(field_code), init_script, eval_locals) 
開發者ID:LexPredict,項目名稱:lexpredict-contraxsuite,代碼行數:34,代碼來源:field_based_ml_field_detection.py

示例5: run_ensemble

# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import ensemble [as 別名]
def run_ensemble():
  MODELS = [
    'xgboost-0p576026_20190319-181720',
    'keras-0p463293_20190319-185422'
  ]
  ensemble(MODELS) 
開發者ID:jeffheaton,項目名稱:jh-kaggle-util,代碼行數:8,代碼來源:models.py

示例6: predict

# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import ensemble [as 別名]
def predict(self, X):
        X = sklearn.utils.validation.check_array(
            X, dtype=sklearn.tree._tree.DTYPE, order='C')
        score = np.zeros((X.shape[0], 1))
        estimators = self.estimators_
        if self.estimators_fitted_ < len(estimators):
            estimators = estimators[:self.estimators_fitted_]
        sklearn.ensemble._gradient_boosting.predict_stages(
            estimators, X, self.learning_rate, score)

        return score.ravel() 
開發者ID:jma127,項目名稱:pyltr,代碼行數:13,代碼來源:lambdamart.py

示例7: iter_y_delta

# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import ensemble [as 別名]
def iter_y_delta(self, i, X):
        assert i >= 0 and i < self.estimators_fitted_

        X = sklearn.utils.validation.check_array(
            X, dtype=sklearn.tree._tree.DTYPE, order='C')
        score = np.zeros((X.shape[0], 1))
        sklearn.ensemble._gradient_boosting.predict_stage(
            self.estimators_, i, X, self.learning_rate, score)

        return score.ravel() 
開發者ID:jma127,項目名稱:pyltr,代碼行數:12,代碼來源:lambdamart.py

示例8: feature_importances

# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import ensemble [as 別名]
def feature_importances(X,y):
    # the output does not stable because of the randomness
    # Build a classification task using 3 informative features
    #X, y = make_classification(n_samples=1000,n_features=10,n_informative=3,n_redundant=0,n_repeated=0,n_classes=2,n_state=0,shuffle=False)
    # Build a forest and compute the feature importances
    from sklearn.ensemble import ExtraTreesClassifier
    forest = ExtraTreesClassifier(n_estimators= 25, criterion = 'entropy' , random_state=None)
    forest.fit(X, y)
    importances = forest.feature_importances_

    std = np.std([tree.feature_importances_ for tree in forest.estimators_],axis=0)
    indices = np.argsort(importances)[::-1]
    # print (indices)
    # Print the feature ranking
    print("Feature ranking:")
    sum1 = 0.0
    for f in range(80):
        print("%d. feature %d (%f)" % (f + 1, indices[f], importances[indices[f]]))
        sum1 = sum1 +  importances[indices[f]]
    print (sum1)
    # Plot the feature importances of the forest
    #width = 0.5
    x_len = range(len(importances))
    plt.figure()
    plt.title("Feature importances")
    plt.bar(x_len, importances[indices] ,color="r", yerr=std[indices], align="center")
    plt.xticks(x_len, indices)
    plt.xlim([-1, max(x_len)+1])
    plt.show()

######################################READ DATA#################################################### 
開發者ID:ririhedou,項目名稱:dr_droid,代碼行數:33,代碼來源:GetMLPara.py

示例9: transfer

# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import ensemble [as 別名]
def transfer(n):
    td, vd, ts = data_loader.load_data(n, abstract=True, expanded=expanded)
    classifiers = [
        #sklearn.svm.SVC(),
        #sklearn.svm.SVC(kernel="linear", C=0.1),
        #sklearn.neighbors.KNeighborsClassifier(1),
        #sklearn.tree.DecisionTreeClassifier(),
        #sklearn.ensemble.RandomForestClassifier(max_depth=10, n_estimators=500, max_features=1),
        sklearn.neural_network.MLPClassifier(alpha=1.0, hidden_layer_sizes=(300,), max_iter=500)
    ]
    for clf in classifiers:
        clf.fit(td[0], td[1])
        print "\n{}: {}".format(type(clf).__name__, round(clf.score(vd[0], vd[1])*100, 2)) 
開發者ID:mnielsen,項目名稱:rmnist,代碼行數:15,代碼來源:transfer.py

示例10: baselines

# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import ensemble [as 別名]
def baselines(n):
    td, vd, ts = data_loader.load_data(n)
    classifiers = [
        sklearn.svm.SVC(C=1000),
        sklearn.svm.SVC(kernel="linear", C=0.1),
        sklearn.neighbors.KNeighborsClassifier(1),
        sklearn.tree.DecisionTreeClassifier(),
        sklearn.ensemble.RandomForestClassifier(max_depth=10, n_estimators=500, max_features=1),
        sklearn.neural_network.MLPClassifier(alpha=1, hidden_layer_sizes=(500, 100))
    ]
    for clf in classifiers:
        clf.fit(td[0], td[1])
        print "\n{}: {}".format(type(clf).__name__, round(clf.score(vd[0], vd[1])*100, 2)) 
開發者ID:mnielsen,項目名稱:rmnist,代碼行數:15,代碼來源:baselines.py

示例11: fit

# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import ensemble [as 別名]
def fit(self, X, y):
        self.ensemble = Ensemble()

        for _ in range(self.n_classifiers):
            # bootstrap
            idx = np.random.choice(X.shape[0], X.shape[0], replace=True)
            data, target = X[idx, :], y[idx]

            classifier = sklearn.base.clone(self.base_classifier)
            classifier.fit(data, target)

            self.ensemble.add(classifier)

        return 
開發者ID:viisar,項目名稱:brew,代碼行數:16,代碼來源:bagging.py

示例12: predict

# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import ensemble [as 別名]
def predict(self, X):
        out = self.ensemble.output(X)
        return self.combiner.combine(out) 
開發者ID:viisar,項目名稱:brew,代碼行數:5,代碼來源:bagging.py

示例13: ensemble_classification

# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import ensemble [as 別名]
def ensemble_classification(self, scoring_metric='roc_auc', trained_model_by_name=None):
        """
        This provides a simple way to put data in and have healthcare.ai train 
        a few models and pick the best one for your data.

        Args:
            scoring_metric (str): The metric used to rank the models. Defaults 
            to 'roc_auc'

            trained_model_by_name (dict): A dictionary of trained models to 
            compare for a custom ensemble

        Returns:
            TrainedSupervisedModel: The best TrainedSupervisedModel found.
        """
        self.validate_classification('Ensemble Classification')
        self.validate_score_metric_for_number_of_classes(scoring_metric)
        score_by_name = {}

        # Here is the default list of algorithms to try for the ensemble
        # Adding an ensemble method is as easy as adding a new key:value pair 
        # in the `model_by_name` dictionary
        if trained_model_by_name is None:
            # TODO because these now all return TSMs it will be additionally 
            # slow by all the factor models.

            # TODO Could these be trained separately then after the best is 
            # found, train the factor model and add to TSM?
            trained_model_by_name = {
                'KNN': self.knn(randomized_search=True, scoring_metric=scoring_metric),
                'Logistic Regression': self.logistic_regression(randomized_search=True),
                'Random Forest Classifier': self.random_forest_classifier(
                    trees=200,
                    randomized_search=True,
                    scoring_metric=scoring_metric)}

        for name, model in trained_model_by_name.items():
            # Unroll estimator from trained supervised model
            estimator = hcai_tsm.get_estimator_from_trained_supervised_model(model)

            # Get the score objects for the estimator
            score = self.metrics(estimator)
            self._console_log('{} algorithm: score = {}'.format(name, score))

            # TODO this may need to ferret out each classification score separately
            score_by_name[name] = score[scoring_metric]

        sorted_names_and_scores = sorted(score_by_name.items(), key=lambda x: x[1])
        best_algorithm_name, best_score = sorted_names_and_scores[-1]
        best_model = trained_model_by_name[best_algorithm_name]

        self._console_log('Based on the scoring metric {}, the best algorithm found is: {}'.format(scoring_metric,
                                                                                                   best_algorithm_name))
        self._console_log('{} {} = {}'.format(best_algorithm_name, scoring_metric, best_score))

        return best_model 
開發者ID:HealthCatalyst,項目名稱:healthcareai-py,代碼行數:58,代碼來源:advanced_supvervised_model_trainer.py

示例14: _estimator_params

# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import ensemble [as 別名]
def _estimator_params(pblm, clf_key):
        est_type = clf_key.split('-')[0]
        if est_type in {'RF', 'RandomForest'}:
            est_kw1 = {
                # 'max_depth': 4,
                'bootstrap': True,
                'class_weight': None,
                'criterion': 'entropy',
                'max_features': 'sqrt',
                # 'max_features': None,
                'min_samples_leaf': 5,
                'min_samples_split': 2,
                # 'n_estimators': 64,
                'n_estimators': 256,
            }
            # Hack to only use missing values if we have the right sklearn
            if 'missing_values' in ut.get_func_kwargs(sklearn.ensemble.RandomForestClassifier.__init__):
                est_kw1['missing_values'] = np.nan
            est_kw2 = {
                'random_state': 3915904814,
                'verbose': 0,
                'n_jobs': -1,
            }
        elif est_type in {'SVC', 'SVM'}:
            est_kw1 = dict(kernel='linear')
            est_kw2 = {}
        elif est_type in {'Logit', 'LogisticRegression'}:
            est_kw1 = {}
            est_kw2 = {}
        elif est_type in {'MLP'}:
            est_kw1 = dict(
                activation='relu', alpha=1e-05, batch_size='auto',
                beta_1=0.9, beta_2=0.999, early_stopping=False,
                epsilon=1e-08, hidden_layer_sizes=(10, 10),
                learning_rate='constant', learning_rate_init=0.001,
                max_iter=200, momentum=0.9, nesterovs_momentum=True,
                power_t=0.5, random_state=3915904814, shuffle=True,
                solver='lbfgs', tol=0.0001, validation_fraction=0.1,
                warm_start=False
            )
            est_kw2 = dict(verbose=False)
        else:
            raise KeyError('Unknown Estimator')
        return est_kw1, est_kw2 
開發者ID:Erotemic,項目名稱:ibeis,代碼行數:46,代碼來源:clf_helpers.py

示例15: _get_estimator

# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import ensemble [as 別名]
def _get_estimator(pblm, clf_key):
        """
        Returns sklearn classifier
        """
        tup = clf_key.split('-')
        wrap_type = None if len(tup) == 1 else tup[1]
        est_type = tup[0]
        multiclass_wrapper = {
            None: ut.identity,
            'OVR': sklearn.multiclass.OneVsRestClassifier,
            'OVO': sklearn.multiclass.OneVsOneClassifier,
        }[wrap_type]
        est_class = {
            'RF': sklearn.ensemble.RandomForestClassifier,
            'SVC': sklearn.svm.SVC,
            'Logit': sklearn.linear_model.LogisticRegression,
            'MLP': sklearn.neural_network.MLPClassifier,
        }[est_type]

        est_kw1, est_kw2 = pblm._estimator_params(est_type)
        est_params = ut.merge_dicts(est_kw1, est_kw2)

        # steps = []
        # steps.append((est_type, est_class(**est_params)))
        # if wrap_type is not None:
        #     steps.append((wrap_type, multiclass_wrapper))
        if est_type == 'MLP':
            def clf_partial():
                pipe = sklearn.pipeline.Pipeline([
                    ('inputer', sklearn.preprocessing.Imputer(
                        missing_values='NaN', strategy='mean', axis=0)),
                    # ('scale', sklearn.preprocessing.StandardScaler),
                    ('est', est_class(**est_params)),
                ])
                return multiclass_wrapper(pipe)
        elif est_type == 'Logit':
            def clf_partial():
                pipe = sklearn.pipeline.Pipeline([
                    ('inputer', sklearn.preprocessing.Imputer(
                        missing_values='NaN', strategy='mean', axis=0)),
                    ('est', est_class(**est_params)),
                ])
                return multiclass_wrapper(pipe)
        else:
            def clf_partial():
                return multiclass_wrapper(est_class(**est_params))

        return clf_partial 
開發者ID:Erotemic,項目名稱:ibeis,代碼行數:50,代碼來源:clf_helpers.py


注:本文中的sklearn.ensemble方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。