當前位置: 首頁>>代碼示例>>Python>>正文


Python ensemble.GradientBoostingRegressor方法代碼示例

本文整理匯總了Python中sklearn.ensemble.GradientBoostingRegressor方法的典型用法代碼示例。如果您正苦於以下問題:Python ensemble.GradientBoostingRegressor方法的具體用法?Python ensemble.GradientBoostingRegressor怎麽用?Python ensemble.GradientBoostingRegressor使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在sklearn.ensemble的用法示例。


在下文中一共展示了ensemble.GradientBoostingRegressor方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: ensure_many_models

# 需要導入模塊: from sklearn import ensemble [as 別名]
# 或者: from sklearn.ensemble import GradientBoostingRegressor [as 別名]
def ensure_many_models(self):
        from sklearn.ensemble import GradientBoostingRegressor, RandomForestRegressor
        from sklearn.neural_network import MLPRegressor
        from sklearn.linear_model import ElasticNet, RANSACRegressor, HuberRegressor, PassiveAggressiveRegressor
        from sklearn.neighbors import KNeighborsRegressor
        from sklearn.svm import SVR, LinearSVR

        import warnings
        from sklearn.exceptions import ConvergenceWarning
        warnings.filterwarnings('ignore', category=ConvergenceWarning)

        for learner in [GradientBoostingRegressor, RandomForestRegressor, MLPRegressor,
                        ElasticNet, RANSACRegressor, HuberRegressor, PassiveAggressiveRegressor,
                        KNeighborsRegressor, SVR, LinearSVR]:
            learner = learner()
            learner_name = str(learner).split("(", maxsplit=1)[0]
            with self.subTest("Test fit using {learner}".format(learner=learner_name)):
                model = self.estimator.__class__(learner)
                model.fit(self.data_lin["X"], self.data_lin["a"], self.data_lin["y"])
                self.assertTrue(True)  # Fit did not crash 
開發者ID:IBM,項目名稱:causallib,代碼行數:22,代碼來源:test_standardization.py

示例2: build_ensemble

# 需要導入模塊: from sklearn import ensemble [as 別名]
# 或者: from sklearn.ensemble import GradientBoostingRegressor [as 別名]
def build_ensemble(**kwargs):
    """Generate ensemble."""

    ens = SuperLearner(**kwargs)
    prep = {'Standard Scaling': [StandardScaler()],
            'Min Max Scaling': [MinMaxScaler()],
            'No Preprocessing': []}

    est = {'Standard Scaling':
               [ElasticNet(), Lasso(), KNeighborsRegressor()],
           'Min Max Scaling':
               [SVR()],
           'No Preprocessing':
               [RandomForestRegressor(random_state=SEED),
                GradientBoostingRegressor()]}

    ens.add(est, prep)

    ens.add(GradientBoostingRegressor(), meta=True)

    return ens 
開發者ID:flennerhag,項目名稱:mlens,代碼行數:23,代碼來源:friedman_scores.py

示例3: test_partial_dependence_sample_weight

# 需要導入模塊: from sklearn import ensemble [as 別名]
# 或者: from sklearn.ensemble import GradientBoostingRegressor [as 別名]
def test_partial_dependence_sample_weight():
    # Test near perfect correlation between partial dependence and diagonal
    # when sample weights emphasize y = x predictions
    N = 1000
    rng = np.random.RandomState(123456)
    mask = rng.randint(2, size=N, dtype=bool)

    x = rng.rand(N)
    # set y = x on mask and y = -x outside
    y = x.copy()
    y[~mask] = -y[~mask]
    X = np.c_[mask, x]
    # sample weights to emphasize data points where y = x
    sample_weight = np.ones(N)
    sample_weight[mask] = 1000.

    clf = GradientBoostingRegressor(n_estimators=10, random_state=1)
    clf.fit(X, y, sample_weight=sample_weight)

    grid = np.arange(0, 1, 0.01)
    pdp = partial_dependence(clf, [1], grid=grid)

    assert np.corrcoef(np.ravel(pdp[0]), grid)[0, 1] > 0.99 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:25,代碼來源:test_partial_dependence.py

示例4: test_regressor_parameter_checks

# 需要導入模塊: from sklearn import ensemble [as 別名]
# 或者: from sklearn.ensemble import GradientBoostingRegressor [as 別名]
def test_regressor_parameter_checks():
    # Check input parameter validation for GradientBoostingRegressor
    assert_raise_message(ValueError, "alpha must be in (0.0, 1.0) but was 1.2",
                         GradientBoostingRegressor(loss='huber', alpha=1.2)
                         .fit, X, y)
    assert_raise_message(ValueError, "alpha must be in (0.0, 1.0) but was 1.2",
                         GradientBoostingRegressor(loss='quantile', alpha=1.2)
                         .fit, X, y)
    assert_raise_message(ValueError, "Invalid value for max_features: "
                         "'invalid'. Allowed string values are 'auto', 'sqrt'"
                         " or 'log2'.",
                         GradientBoostingRegressor(max_features='invalid').fit,
                         X, y)
    assert_raise_message(ValueError, "n_iter_no_change should either be None"
                         " or an integer. 'invalid' was passed",
                         GradientBoostingRegressor(n_iter_no_change='invalid')
                         .fit, X, y)
    allowed_presort = ('auto', True, False)
    assert_raise_message(ValueError,
                         "'presort' should be in {}. "
                         "Got 'invalid' instead.".format(allowed_presort),
                         GradientBoostingRegressor(presort='invalid')
                         .fit, X, y) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:25,代碼來源:test_gradient_boosting.py

示例5: test_check_inputs_predict

# 需要導入模塊: from sklearn import ensemble [as 別名]
# 或者: from sklearn.ensemble import GradientBoostingRegressor [as 別名]
def test_check_inputs_predict():
    # X has wrong shape
    clf = GradientBoostingClassifier(n_estimators=100, random_state=1)
    clf.fit(X, y)

    x = np.array([1.0, 2.0])[:, np.newaxis]
    assert_raises(ValueError, clf.predict, x)

    x = np.array([[]])
    assert_raises(ValueError, clf.predict, x)

    x = np.array([1.0, 2.0, 3.0])[:, np.newaxis]
    assert_raises(ValueError, clf.predict, x)

    clf = GradientBoostingRegressor(n_estimators=100, random_state=1)
    clf.fit(X, rng.rand(len(X)))

    x = np.array([1.0, 2.0])[:, np.newaxis]
    assert_raises(ValueError, clf.predict, x)

    x = np.array([[]])
    assert_raises(ValueError, clf.predict, x)

    x = np.array([1.0, 2.0, 3.0])[:, np.newaxis]
    assert_raises(ValueError, clf.predict, x) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:27,代碼來源:test_gradient_boosting.py

示例6: test_staged_predict

# 需要導入模塊: from sklearn import ensemble [as 別名]
# 或者: from sklearn.ensemble import GradientBoostingRegressor [as 別名]
def test_staged_predict():
    # Test whether staged decision function eventually gives
    # the same prediction.
    X, y = datasets.make_friedman1(n_samples=1200,
                                   random_state=1, noise=1.0)
    X_train, y_train = X[:200], y[:200]
    X_test = X[200:]
    clf = GradientBoostingRegressor()
    # test raise ValueError if not fitted
    assert_raises(ValueError, lambda X: np.fromiter(
        clf.staged_predict(X), dtype=np.float64), X_test)

    clf.fit(X_train, y_train)
    y_pred = clf.predict(X_test)

    # test if prediction for last stage equals ``predict``
    for y in clf.staged_predict(X_test):
        assert_equal(y.shape, y_pred.shape)

    assert_array_almost_equal(y_pred, y) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:22,代碼來源:test_gradient_boosting.py

示例7: test_warm_start

# 需要導入模塊: from sklearn import ensemble [as 別名]
# 或者: from sklearn.ensemble import GradientBoostingRegressor [as 別名]
def test_warm_start(Cls):
    # Test if warm start equals fit.
    X, y = datasets.make_hastie_10_2(n_samples=100, random_state=1)
    est = Cls(n_estimators=200, max_depth=1)
    est.fit(X, y)

    est_ws = Cls(n_estimators=100, max_depth=1, warm_start=True)
    est_ws.fit(X, y)
    est_ws.set_params(n_estimators=200)
    est_ws.fit(X, y)

    if Cls is GradientBoostingRegressor:
        assert_array_almost_equal(est_ws.predict(X), est.predict(X))
    else:
        # Random state is preserved and hence predict_proba must also be
        # same
        assert_array_equal(est_ws.predict(X), est.predict(X))
        assert_array_almost_equal(est_ws.predict_proba(X),
                                  est.predict_proba(X)) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:21,代碼來源:test_gradient_boosting.py

示例8: test_gradient_boosting_with_init

# 需要導入模塊: from sklearn import ensemble [as 別名]
# 或者: from sklearn.ensemble import GradientBoostingRegressor [as 別名]
def test_gradient_boosting_with_init(gb, dataset_maker, init_estimator):
    # Check that GradientBoostingRegressor works when init is a sklearn
    # estimator.
    # Check that an error is raised if trying to fit with sample weight but
    # inital estimator does not support sample weight

    X, y = dataset_maker()
    sample_weight = np.random.RandomState(42).rand(100)

    # init supports sample weights
    init_est = init_estimator()
    gb(init=init_est).fit(X, y, sample_weight=sample_weight)

    # init does not support sample weights
    init_est = _NoSampleWeightWrapper(init_estimator())
    gb(init=init_est).fit(X, y)  # ok no sample weights
    with pytest.raises(ValueError,
                       match="estimator.*does not support sample weights"):
        gb(init=init_est).fit(X, y, sample_weight=sample_weight) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:21,代碼來源:test_gradient_boosting.py

示例9: test_multi_target_regression

# 需要導入模塊: from sklearn import ensemble [as 別名]
# 或者: from sklearn.ensemble import GradientBoostingRegressor [as 別名]
def test_multi_target_regression():
    X, y = datasets.make_regression(n_targets=3)
    X_train, y_train = X[:50], y[:50]
    X_test, y_test = X[50:], y[50:]

    references = np.zeros_like(y_test)
    for n in range(3):
        rgr = GradientBoostingRegressor(random_state=0)
        rgr.fit(X_train, y_train[:, n])
        references[:, n] = rgr.predict(X_test)

    rgr = MultiOutputRegressor(GradientBoostingRegressor(random_state=0))
    rgr.fit(X_train, y_train)
    y_pred = rgr.predict(X_test)

    assert_almost_equal(references, y_pred)


# 0.23. warning about tol not having its correct default value. 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:21,代碼來源:test_multioutput.py

示例10: test_multi_target_sample_weights

# 需要導入模塊: from sklearn import ensemble [as 別名]
# 或者: from sklearn.ensemble import GradientBoostingRegressor [as 別名]
def test_multi_target_sample_weights():
    # weighted regressor
    Xw = [[1, 2, 3], [4, 5, 6]]
    yw = [[3.141, 2.718], [2.718, 3.141]]
    w = [2., 1.]
    rgr_w = MultiOutputRegressor(GradientBoostingRegressor(random_state=0))
    rgr_w.fit(Xw, yw, w)

    # unweighted, but with repeated samples
    X = [[1, 2, 3], [1, 2, 3], [4, 5, 6]]
    y = [[3.141, 2.718], [3.141, 2.718], [2.718, 3.141]]
    rgr = MultiOutputRegressor(GradientBoostingRegressor(random_state=0))
    rgr.fit(X, y)

    X_test = [[1.5, 2.5, 3.5], [3.5, 4.5, 5.5]]
    assert_almost_equal(rgr.predict(X_test), rgr_w.predict(X_test))


# Import the data 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:21,代碼來源:test_multioutput.py

示例11: __init__

# 需要導入模塊: from sklearn import ensemble [as 別名]
# 或者: from sklearn.ensemble import GradientBoostingRegressor [as 別名]
def __init__(self, q1=.16, q2=.84,**params):
        """
        Gradient boosted trees as surrogate model for Bayesian Optimization.
        Uses quantile regression for an estimate of the 'posterior' variance.
        In practice, the std is computed as (`q2` - `q1`) / 2.
        Relies on `sklearn.ensemble.GradientBoostingRegressor`

        Parameters
        ----------
        q1: float
            First quantile.
        q2: float
            Second quantile
        params: tuple
            Extra parameters to pass to `GradientBoostingRegressor`

        """
        self.params = params
        self.q1 = q1
        self.q2 = q2
        self.eps = 1e-1 
開發者ID:josejimenezluna,項目名稱:pyGPGO,代碼行數:23,代碼來源:BoostedTrees.py

示例12: fit

# 需要導入模塊: from sklearn import ensemble [as 別名]
# 或者: from sklearn.ensemble import GradientBoostingRegressor [as 別名]
def fit(self, X, y):
        """
        Fit a GBM model to data `X` and targets `y`.

        Parameters
        ----------
        X : array-like
            Input values.
        y: array-like
            Target values.
        """
        self.X = X
        self.y = y
        self.n = self.X.shape[0]
        self.modq1 = GradientBoostingRegressor(loss='quantile', alpha=self.q1, **self.params)
        self.modq2 = GradientBoostingRegressor(loss='quantile', alpha=self.q2, **self.params)
        self.mod = GradientBoostingRegressor(loss = 'ls', **self.params)
        self.modq1.fit(self.X, self.y)
        self.modq2.fit(self.X, self.y)
        self.mod.fit(self.X, self.y) 
開發者ID:josejimenezluna,項目名稱:pyGPGO,代碼行數:22,代碼來源:BoostedTrees.py

示例13: test_boston_OHE_plus_trees

# 需要導入模塊: from sklearn import ensemble [as 別名]
# 或者: from sklearn.ensemble import GradientBoostingRegressor [as 別名]
def test_boston_OHE_plus_trees(self):

        data = load_boston()

        pl = Pipeline(
            [
                ("OHE", OneHotEncoder(categorical_features=[8], sparse=False)),
                ("Trees", GradientBoostingRegressor(random_state=1)),
            ]
        )

        pl.fit(data.data, data.target)

        # Convert the model
        spec = convert(pl, data.feature_names, "target")

        if _is_macos() and _macos_version() >= (10, 13):
            # Get predictions
            df = pd.DataFrame(data.data, columns=data.feature_names)
            df["prediction"] = pl.predict(data.data)

            # Evaluate it
            result = evaluate_regressor(spec, df, "target", verbose=False)

            assert result["max_error"] < 0.0001 
開發者ID:apple,項目名稱:coremltools,代碼行數:27,代碼來源:test_composite_pipelines.py

示例14: train_model

# 需要導入模塊: from sklearn import ensemble [as 別名]
# 或者: from sklearn.ensemble import GradientBoostingRegressor [as 別名]
def train_model(self, train_file_path, model_path):
        print("==> Load the data ...")
        X_train, Y_train = self.load_file(train_file_path)
        print(train_file_path, shape(X_train))

        print("==> Train the model ...")
        min_max_scaler = preprocessing.MaxAbsScaler()
        X_train_minmax = min_max_scaler.fit_transform(X_train)

        clf = GradientBoostingRegressor(n_estimators=self.n_estimators)
        clf.fit(X_train_minmax.toarray(), Y_train)

        print("==> Save the model ...")
        pickle.dump(clf, open(model_path, 'wb'))

        scaler_path = model_path.replace('.pkl', '.scaler.pkl')
        pickle.dump(min_max_scaler, open(scaler_path, 'wb'))
        return clf 
開發者ID:rgtjf,項目名稱:Semantic-Texual-Similarity-Toolkits,代碼行數:20,代碼來源:classifier.py

示例15: test_same_prediction

# 需要導入模塊: from sklearn import ensemble [as 別名]
# 或者: from sklearn.ensemble import GradientBoostingRegressor [as 別名]
def test_same_prediction(self):
        from sklearn.ensemble import GradientBoostingRegressor
        params = {'n_estimators': 1, 'max_depth': 2, 'min_samples_split': 2,
                  'learning_rate': 0.8, 'loss': 'ls'}
        sklearn_model = GradientBoostingRegressor(**params)
        sklearn_model.fit(self.data.X.values, self.data.y.values)

        sklearn_tree = sklearn_model.estimators_[0][0].tree_
        bartpy_tree = Tree([LeafNode(Split(self.data))])

        map_sklearn_tree_into_bartpy(bartpy_tree, sklearn_tree)

        sklearn_predictions = sklearn_tree.predict(self.data.X.values.astype(np.float32))
        sklearn_predictions = [round(x, 2) for x in sklearn_predictions.reshape(-1)]

        bartpy_tree.cache_up_to_date = False
        bartpy_tree_predictions = bartpy_tree.predict(self.data.X.values)
        bartpy_tree_predictions = [round(x, 2) for x in bartpy_tree_predictions]

        self.assertListEqual(sklearn_predictions, bartpy_tree_predictions) 
開發者ID:JakeColtman,項目名稱:bartpy,代碼行數:22,代碼來源:test_tree.py


注:本文中的sklearn.ensemble.GradientBoostingRegressor方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。