本文整理匯總了Python中sklearn.ensemble.AdaBoostClassifier方法的典型用法代碼示例。如果您正苦於以下問題:Python ensemble.AdaBoostClassifier方法的具體用法?Python ensemble.AdaBoostClassifier怎麽用?Python ensemble.AdaBoostClassifier使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類sklearn.ensemble
的用法示例。
在下文中一共展示了ensemble.AdaBoostClassifier方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: buildModel
# 需要導入模塊: from sklearn import ensemble [as 別名]
# 或者: from sklearn.ensemble import AdaBoostClassifier [as 別名]
def buildModel(dataset, method, parameters):
"""
Build final model for predicting real testing data
"""
features = dataset.columns[0:-1]
if method == 'RNN':
clf = performRNNlass(dataset[features], dataset['UpDown'])
return clf
elif method == 'RF':
clf = RandomForestClassifier(n_estimators=1000, n_jobs=-1)
elif method == 'KNN':
clf = neighbors.KNeighborsClassifier()
elif method == 'SVM':
c = parameters[0]
g = parameters[1]
clf = SVC(C=c, gamma=g)
elif method == 'ADA':
clf = AdaBoostClassifier()
return clf.fit(dataset[features], dataset['UpDown'])
示例2: Train
# 需要導入模塊: from sklearn import ensemble [as 別名]
# 或者: from sklearn.ensemble import AdaBoostClassifier [as 別名]
def Train(data, modelcount, censhu, yanzhgdata):
model = AdaBoostClassifier(DecisionTreeClassifier(max_depth=censhu),
algorithm="SAMME",
n_estimators=modelcount, learning_rate=0.8)
model.fit(data[:, :-1], data[:, -1])
# 給出訓練數據的預測值
train_out = model.predict(data[:, :-1])
# 計算MSE
train_mse = fmse(data[:, -1], train_out)[0]
# 給出驗證數據的預測值
add_yan = model.predict(yanzhgdata[:, :-1])
# 計算f1度量
add_mse = fmse(yanzhgdata[:, -1], add_yan)[0]
print(train_mse, add_mse)
return train_mse, add_mse
# 最終確定組合的函數
示例3: recspre
# 需要導入模塊: from sklearn import ensemble [as 別名]
# 或者: from sklearn.ensemble import AdaBoostClassifier [as 別名]
def recspre(estrs, predata, datadict, zhe):
mo, ze = estrs.split('-')
model = AdaBoostClassifier(DecisionTreeClassifier(max_depth=int(ze)),
algorithm="SAMME",
n_estimators=int(mo), learning_rate=0.8)
model.fit(datadict[zhe]['train'][:, :-1], datadict[zhe]['train'][:, -1])
# 預測
yucede = model.predict(predata[:, :-1])
# 計算混淆矩陣
print(ConfuseMatrix(predata[:, -1], yucede))
return fmse(predata[:, -1], yucede)
# 主函數
示例4: test_gridsearch
# 需要導入模塊: from sklearn import ensemble [as 別名]
# 或者: from sklearn.ensemble import AdaBoostClassifier [as 別名]
def test_gridsearch():
# Check that base trees can be grid-searched.
# AdaBoost classification
boost = AdaBoostClassifier(base_estimator=DecisionTreeClassifier())
parameters = {'n_estimators': (1, 2),
'base_estimator__max_depth': (1, 2),
'algorithm': ('SAMME', 'SAMME.R')}
clf = GridSearchCV(boost, parameters)
clf.fit(iris.data, iris.target)
# AdaBoost regression
boost = AdaBoostRegressor(base_estimator=DecisionTreeRegressor(),
random_state=0)
parameters = {'n_estimators': (1, 2),
'base_estimator__max_depth': (1, 2)}
clf = GridSearchCV(boost, parameters)
clf.fit(boston.data, boston.target)
示例5: test_importances
# 需要導入模塊: from sklearn import ensemble [as 別名]
# 或者: from sklearn.ensemble import AdaBoostClassifier [as 別名]
def test_importances():
# Check variable importances.
X, y = datasets.make_classification(n_samples=2000,
n_features=10,
n_informative=3,
n_redundant=0,
n_repeated=0,
shuffle=False,
random_state=1)
for alg in ['SAMME', 'SAMME.R']:
clf = AdaBoostClassifier(algorithm=alg)
clf.fit(X, y)
importances = clf.feature_importances_
assert_equal(importances.shape[0], 10)
assert_equal((importances[:3, np.newaxis] >= importances[3:]).all(),
True)
示例6: test_multidimensional_X
# 需要導入模塊: from sklearn import ensemble [as 別名]
# 或者: from sklearn.ensemble import AdaBoostClassifier [as 別名]
def test_multidimensional_X():
"""
Check that the AdaBoost estimators can work with n-dimensional
data matrix
"""
from sklearn.dummy import DummyClassifier, DummyRegressor
rng = np.random.RandomState(0)
X = rng.randn(50, 3, 3)
yc = rng.choice([0, 1], 50)
yr = rng.randn(50)
boost = AdaBoostClassifier(DummyClassifier(strategy='most_frequent'))
boost.fit(X, yc)
boost.predict(X)
boost.predict_proba(X)
boost = AdaBoostRegressor(DummyRegressor())
boost.fit(X, yr)
boost.predict(X)
示例7: __init__
# 需要導入模塊: from sklearn import ensemble [as 別名]
# 或者: from sklearn.ensemble import AdaBoostClassifier [as 別名]
def __init__(self, classifier=FaceClassifierModels.DEFAULT):
self._clf = None
if classifier == FaceClassifierModels.LINEAR_SVM:
self._clf = SVC(C=1.0, kernel="linear", probability=True)
elif classifier == FaceClassifierModels.NAIVE_BAYES:
self._clf = GaussianNB()
elif classifier == FaceClassifierModels.RBF_SVM:
self._clf = SVC(C=1, kernel='rbf', probability=True, gamma=2)
elif classifier == FaceClassifierModels.NEAREST_NEIGHBORS:
self._clf = KNeighborsClassifier(1)
elif classifier == FaceClassifierModels.DECISION_TREE:
self._clf = DecisionTreeClassifier(max_depth=5)
elif classifier == FaceClassifierModels.RANDOM_FOREST:
self._clf = RandomForestClassifier(max_depth=5, n_estimators=10, max_features=1)
elif classifier == FaceClassifierModels.NEURAL_NET:
self._clf = MLPClassifier(alpha=1)
elif classifier == FaceClassifierModels.ADABOOST:
self._clf = AdaBoostClassifier()
elif classifier == FaceClassifierModels.QDA:
self._clf = QuadraticDiscriminantAnalysis()
print("classifier={}".format(FaceClassifierModels(classifier)))
示例8: getModels
# 需要導入模塊: from sklearn import ensemble [as 別名]
# 或者: from sklearn.ensemble import AdaBoostClassifier [as 別名]
def getModels():
result = []
result.append("LinearRegression")
result.append("BayesianRidge")
result.append("ARDRegression")
result.append("ElasticNet")
result.append("HuberRegressor")
result.append("Lasso")
result.append("LassoLars")
result.append("Rigid")
result.append("SGDRegressor")
result.append("SVR")
result.append("MLPClassifier")
result.append("KNeighborsClassifier")
result.append("SVC")
result.append("GaussianProcessClassifier")
result.append("DecisionTreeClassifier")
result.append("RandomForestClassifier")
result.append("AdaBoostClassifier")
result.append("GaussianNB")
result.append("LogisticRegression")
result.append("QuadraticDiscriminantAnalysis")
return result
示例9: main
# 需要導入模塊: from sklearn import ensemble [as 別名]
# 或者: from sklearn.ensemble import AdaBoostClassifier [as 別名]
def main():
# prepare data
trainingSet=[]
testSet=[]
accuracy = 0.0
split = 0.20
loadDataset('../Dataset/med.data', split, trainingSet, testSet)
print('Train set: ' + repr(len(trainingSet)))
print('Test set: ' + repr(len(testSet)))
trainData = np.array(trainingSet)[:,0:np.array(trainingSet).shape[1] - 1]
columns = trainData.shape[1]
X = np.array(trainData)
y = np.array(trainingSet)[:,columns]
clf = AdaBoostClassifier()
clf.fit(X, y)
testData = np.array(testSet)[:,0:np.array(trainingSet).shape[1] - 1]
X_test = np.array(testData)
y_test = np.array(testSet)[:,columns]
accuracy = clf.score(X_test,y_test)
accuracy *= 100
print("Accuracy %:",accuracy)
示例10: learn
# 需要導入模塊: from sklearn import ensemble [as 別名]
# 或者: from sklearn.ensemble import AdaBoostClassifier [as 別名]
def learn(x, y, test_x):
# set sample weight
weight_list = []
for j in range(len(y)):
if y[j] == "0":
weight_list.append(variables.weight_0_ada)
if y[j] == "1000":
weight_list.append(variables.weight_1000_ada)
if y[j] == "1500":
weight_list.append(variables.weight_1500_ada)
if y[j] == "2000":
weight_list.append(variables.weight_2000_ada)
clf = AdaBoostClassifier(n_estimators=variables.n_estimators_ada, learning_rate=variables.learning_rate_ada).fit(x,
y,
np.asarray(
weight_list))
prediction_list = clf.predict(test_x)
prediction_list_prob = clf.predict_proba(test_x)
return prediction_list, prediction_list_prob
示例11: run_sklearn
# 需要導入模塊: from sklearn import ensemble [as 別名]
# 或者: from sklearn.ensemble import AdaBoostClassifier [as 別名]
def run_sklearn():
n_trees = 100
n_folds = 3
# https://www.analyticsvidhya.com/blog/2015/06/tuning-random-forest-model/
alg_list = [
['rforest',RandomForestClassifier(n_estimators=1000, n_jobs=-1, verbose=1, max_depth=3)],
['extree',ExtraTreesClassifier(n_estimators = 1000,max_depth=3,n_jobs=-1)],
['adaboost',AdaBoostClassifier(base_estimator=None, n_estimators=600, learning_rate=1.0)],
['knn', sklearn.neighbors.KNeighborsClassifier(n_neighbors=5,n_jobs=-1)]
]
start_time = time.time()
for name,alg in alg_list:
train = jhkaggle.train_sklearn.TrainSKLearn("1",name,alg,False)
train.run()
train = None
示例12: _train_adaboost
# 需要導入模塊: from sklearn import ensemble [as 別名]
# 或者: from sklearn.ensemble import AdaBoostClassifier [as 別名]
def _train_adaboost(self, X, y):
# Define hyperparams.
# http://scikit-learn.org/stable/modules/ensemble.html#adaboost
self._get_or_set_hyperparam('base_estimator')
self._get_or_set_hyperparam('n_estimators')
self._get_or_set_hyperparam('learning_rate')
self._get_or_set_hyperparam('adaboost_algorithm')
self._get_or_set_hyperparam('n_jobs')
self._get_or_set_hyperparam('class_weight')
self._get_or_set_hyperparam('scoring')
# Build initial model.
self._model = AdaBoostClassifier(\
base_estimator=DecisionTreeClassifier(class_weight='balanced'),
n_estimators=self._hyperparams['n_estimators'],
learning_rate=self._hyperparams['learning_rate'],
algorithm=self._hyperparams['adaboost_algorithm'],
random_state=self._hyperparams['random_state']
)
# Tune hyperparams.
self._tune_hyperparams(self._hyperparam_search_space, X, y)
示例13: test_ada_boost_classifier_samme_r
# 需要導入模塊: from sklearn import ensemble [as 別名]
# 或者: from sklearn.ensemble import AdaBoostClassifier [as 別名]
def test_ada_boost_classifier_samme_r(self):
model, X_test = fit_classification_model(AdaBoostClassifier(
n_estimators=10, algorithm="SAMME.R", random_state=42,
base_estimator=DecisionTreeClassifier(
max_depth=2, random_state=42)), 3)
model_onnx = convert_sklearn(
model,
"AdaBoost classification",
[("input", FloatTensorType((None, X_test.shape[1])))],
target_opset=10
)
self.assertIsNotNone(model_onnx)
dump_data_and_model(
X_test,
model,
model_onnx,
basename="SklearnAdaBoostClassifierSAMMER",
allow_failure="StrictVersion("
"onnxruntime.__version__)"
"<= StrictVersion('0.2.1')",
)
示例14: test_ada_boost_classifier_samme_r_decision_function
# 需要導入模塊: from sklearn import ensemble [as 別名]
# 或者: from sklearn.ensemble import AdaBoostClassifier [as 別名]
def test_ada_boost_classifier_samme_r_decision_function(self):
model, X_test = fit_classification_model(AdaBoostClassifier(
n_estimators=10, algorithm="SAMME.R", random_state=42,
base_estimator=DecisionTreeClassifier(
max_depth=2, random_state=42)), 4)
options = {id(model): {'raw_scores': True}}
model_onnx = convert_sklearn(
model,
"AdaBoost classification",
[("input", FloatTensorType((None, X_test.shape[1])))],
target_opset=10,
options=options,
)
self.assertIsNotNone(model_onnx)
dump_data_and_model(
X_test,
model,
model_onnx,
basename="SklearnAdaBoostClassifierSAMMERDecisionFunction",
allow_failure="StrictVersion("
"onnxruntime.__version__)"
"<= StrictVersion('0.2.1')",
methods=['predict', 'decision_function'],
)
示例15: test_ada_boost_classifier_samme_r_logreg
# 需要導入模塊: from sklearn import ensemble [as 別名]
# 或者: from sklearn.ensemble import AdaBoostClassifier [as 別名]
def test_ada_boost_classifier_samme_r_logreg(self):
model, X_test = fit_classification_model(AdaBoostClassifier(
n_estimators=5, algorithm="SAMME.R",
base_estimator=LogisticRegression(
solver='liblinear')), 4)
model_onnx = convert_sklearn(
model,
"AdaBoost classification",
[("input", FloatTensorType((None, X_test.shape[1])))],
target_opset=10
)
self.assertIsNotNone(model_onnx)
dump_data_and_model(
X_test,
model,
model_onnx,
basename="SklearnAdaBoostClassifierSAMMERLogReg",
allow_failure="StrictVersion("
"onnxruntime.__version__)"
"<= StrictVersion('0.2.1')",
)