本文整理匯總了Python中sklearn.dummy.DummyRegressor方法的典型用法代碼示例。如果您正苦於以下問題:Python dummy.DummyRegressor方法的具體用法?Python dummy.DummyRegressor怎麽用?Python dummy.DummyRegressor使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類sklearn.dummy
的用法示例。
在下文中一共展示了dummy.DummyRegressor方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_multidimensional_X
# 需要導入模塊: from sklearn import dummy [as 別名]
# 或者: from sklearn.dummy import DummyRegressor [as 別名]
def test_multidimensional_X():
"""
Check that the AdaBoost estimators can work with n-dimensional
data matrix
"""
from sklearn.dummy import DummyClassifier, DummyRegressor
rng = np.random.RandomState(0)
X = rng.randn(50, 3, 3)
yc = rng.choice([0, 1], 50)
yr = rng.randn(50)
boost = AdaBoostClassifier(DummyClassifier(strategy='most_frequent'))
boost.fit(X, yc)
boost.predict(X)
boost.predict_proba(X)
boost = AdaBoostRegressor(DummyRegressor())
boost.fit(X, yr)
boost.predict(X)
示例2: test_notfitted
# 需要導入模塊: from sklearn import dummy [as 別名]
# 或者: from sklearn.dummy import DummyRegressor [as 別名]
def test_notfitted():
eclf = VotingClassifier(estimators=[('lr1', LogisticRegression()),
('lr2', LogisticRegression())],
voting='soft')
ereg = VotingRegressor([('dr', DummyRegressor())])
msg = ("This %s instance is not fitted yet. Call \'fit\'"
" with appropriate arguments before using this method.")
assert_raise_message(NotFittedError, msg % 'VotingClassifier',
eclf.predict, X)
assert_raise_message(NotFittedError, msg % 'VotingClassifier',
eclf.predict_proba, X)
assert_raise_message(NotFittedError, msg % 'VotingClassifier',
eclf.transform, X)
assert_raise_message(NotFittedError, msg % 'VotingRegressor',
ereg.predict, X_r)
assert_raise_message(NotFittedError, msg % 'VotingRegressor',
ereg.transform, X_r)
示例3: test_median_strategy_multioutput_regressor
# 需要導入模塊: from sklearn import dummy [as 別名]
# 或者: from sklearn.dummy import DummyRegressor [as 別名]
def test_median_strategy_multioutput_regressor():
random_state = np.random.RandomState(seed=1)
X_learn = random_state.randn(10, 10)
y_learn = random_state.randn(10, 5)
median = np.median(y_learn, axis=0).reshape((1, -1))
X_test = random_state.randn(20, 10)
y_test = random_state.randn(20, 5)
# Correctness oracle
est = DummyRegressor(strategy="median")
est.fit(X_learn, y_learn)
y_pred_learn = est.predict(X_learn)
y_pred_test = est.predict(X_test)
_check_equality_regressor(
median, y_learn, y_pred_learn, y_test, y_pred_test)
_check_behavior_2d(est)
示例4: test_quantile_strategy_regressor
# 需要導入模塊: from sklearn import dummy [as 別名]
# 或者: from sklearn.dummy import DummyRegressor [as 別名]
def test_quantile_strategy_regressor():
random_state = np.random.RandomState(seed=1)
X = [[0]] * 5 # ignored
y = random_state.randn(5)
reg = DummyRegressor(strategy="quantile", quantile=0.5)
reg.fit(X, y)
assert_array_equal(reg.predict(X), [np.median(y)] * len(X))
reg = DummyRegressor(strategy="quantile", quantile=0)
reg.fit(X, y)
assert_array_equal(reg.predict(X), [np.min(y)] * len(X))
reg = DummyRegressor(strategy="quantile", quantile=1)
reg.fit(X, y)
assert_array_equal(reg.predict(X), [np.max(y)] * len(X))
reg = DummyRegressor(strategy="quantile", quantile=0.3)
reg.fit(X, y)
assert_array_equal(reg.predict(X), [np.percentile(y, q=30)] * len(X))
示例5: test_constant_strategy_multioutput_regressor
# 需要導入模塊: from sklearn import dummy [as 別名]
# 或者: from sklearn.dummy import DummyRegressor [as 別名]
def test_constant_strategy_multioutput_regressor():
random_state = np.random.RandomState(seed=1)
X_learn = random_state.randn(10, 10)
y_learn = random_state.randn(10, 5)
# test with 2d array
constants = random_state.randn(5)
X_test = random_state.randn(20, 10)
y_test = random_state.randn(20, 5)
# Correctness oracle
est = DummyRegressor(strategy="constant", constant=constants)
est.fit(X_learn, y_learn)
y_pred_learn = est.predict(X_learn)
y_pred_test = est.predict(X_test)
_check_equality_regressor(
constants, y_learn, y_pred_learn, y_test, y_pred_test)
_check_behavior_2d_for_constant(est)
示例6: test_dummy_regressor_sample_weight
# 需要導入模塊: from sklearn import dummy [as 別名]
# 或者: from sklearn.dummy import DummyRegressor [as 別名]
def test_dummy_regressor_sample_weight(n_samples=10):
random_state = np.random.RandomState(seed=1)
X = [[0]] * n_samples
y = random_state.rand(n_samples)
sample_weight = random_state.rand(n_samples)
est = DummyRegressor(strategy="mean").fit(X, y, sample_weight)
assert_equal(est.constant_, np.average(y, weights=sample_weight))
est = DummyRegressor(strategy="median").fit(X, y, sample_weight)
assert_equal(est.constant_, _weighted_percentile(y, sample_weight, 50.))
est = DummyRegressor(strategy="quantile", quantile=.95).fit(X, y,
sample_weight)
assert_equal(est.constant_, _weighted_percentile(y, sample_weight, 95.))
示例7: test_constant_shrinkage
# 需要導入模塊: from sklearn import dummy [as 別名]
# 或者: from sklearn.dummy import DummyRegressor [as 別名]
def test_constant_shrinkage(shrinkage_data):
df, means = shrinkage_data
X, y = df.drop(columns="Target"), df["Target"]
shrink_est = GroupedEstimator(
DummyRegressor(),
["Planet", "Country", "City"],
shrinkage="constant",
use_global_model=False,
alpha=0.1,
)
shrinkage_factors = np.array([0.01, 0.09, 0.9])
shrink_est.fit(X, y)
expected_prediction = [
np.array([means["Earth"], means["NL"], means["Amsterdam"]]) @ shrinkage_factors,
np.array([means["Earth"], means["NL"], means["Rotterdam"]]) @ shrinkage_factors,
np.array([means["Earth"], means["BE"], means["Antwerp"]]) @ shrinkage_factors,
np.array([means["Earth"], means["BE"], means["Brussels"]]) @ shrinkage_factors,
]
assert expected_prediction == shrink_est.predict(X).tolist()
示例8: test_relative_shrinkage
# 需要導入模塊: from sklearn import dummy [as 別名]
# 或者: from sklearn.dummy import DummyRegressor [as 別名]
def test_relative_shrinkage(shrinkage_data):
df, means = shrinkage_data
X, y = df.drop(columns="Target"), df["Target"]
shrink_est = GroupedEstimator(
DummyRegressor(),
["Planet", "Country", "City"],
shrinkage="relative",
use_global_model=False,
)
shrinkage_factors = np.array([4, 2, 1]) / 7
shrink_est.fit(X, y)
expected_prediction = [
np.array([means["Earth"], means["NL"], means["Amsterdam"]]) @ shrinkage_factors,
np.array([means["Earth"], means["NL"], means["Rotterdam"]]) @ shrinkage_factors,
np.array([means["Earth"], means["BE"], means["Antwerp"]]) @ shrinkage_factors,
np.array([means["Earth"], means["BE"], means["Brussels"]]) @ shrinkage_factors,
]
assert expected_prediction == shrink_est.predict(X).tolist()
示例9: test_min_n_obs_shrinkage
# 需要導入模塊: from sklearn import dummy [as 別名]
# 或者: from sklearn.dummy import DummyRegressor [as 別名]
def test_min_n_obs_shrinkage(shrinkage_data):
df, means = shrinkage_data
X, y = df.drop(columns="Target"), df["Target"]
shrink_est = GroupedEstimator(
DummyRegressor(),
["Planet", "Country", "City"],
shrinkage="min_n_obs",
use_global_model=False,
min_n_obs=2,
)
shrink_est.fit(X, y)
expected_prediction = [means["NL"], means["NL"], means["BE"], means["BE"]]
assert expected_prediction == shrink_est.predict(X).tolist()
示例10: test_min_n_obs_shrinkage_too_little_obs
# 需要導入模塊: from sklearn import dummy [as 別名]
# 或者: from sklearn.dummy import DummyRegressor [as 別名]
def test_min_n_obs_shrinkage_too_little_obs(shrinkage_data):
df, means = shrinkage_data
X, y = df.drop(columns="Target"), df["Target"]
too_big_n_obs = X.shape[0] + 1
shrink_est = GroupedEstimator(
DummyRegressor(),
["Planet", "Country", "City"],
shrinkage="min_n_obs",
use_global_model=False,
min_n_obs=too_big_n_obs,
)
with pytest.raises(ValueError) as e:
shrink_est.fit(X, y)
assert (
f"There is no group with size greater than or equal to {too_big_n_obs}"
in str(e)
)
示例11: test_custom_shrinkage_wrong_length
# 需要導入模塊: from sklearn import dummy [as 別名]
# 或者: from sklearn.dummy import DummyRegressor [as 別名]
def test_custom_shrinkage_wrong_length(shrinkage_data):
df, means = shrinkage_data
X, y = df.drop(columns="Target"), df["Target"]
def shrinkage_func(group_sizes):
n = len(group_sizes)
return np.repeat(1 / n, n + 1)
with pytest.raises(ValueError) as e:
shrink_est = GroupedEstimator(
DummyRegressor(),
["Planet", "Country", "City"],
shrinkage=shrinkage_func,
use_global_model=False,
)
shrink_est.fit(X, y)
assert ".shape should be " in str(e)
示例12: test_custom_shrinkage_raises_error
# 需要導入模塊: from sklearn import dummy [as 別名]
# 或者: from sklearn.dummy import DummyRegressor [as 別名]
def test_custom_shrinkage_raises_error(shrinkage_data):
df, means = shrinkage_data
X, y = df.drop(columns="Target"), df["Target"]
def shrinkage_func(group_sizes):
raise KeyError("This function is bad and you should feel bad")
with pytest.raises(ValueError) as e:
shrink_est = GroupedEstimator(
DummyRegressor(),
["Planet", "Country", "City"],
shrinkage=shrinkage_func,
use_global_model=False,
)
shrink_est.fit(X, y)
assert "you should feel bad" in str(
e
) and "while checking the shrinkage function" in str(e)
示例13: test_invalid_shrinkage
# 需要導入模塊: from sklearn import dummy [as 別名]
# 或者: from sklearn.dummy import DummyRegressor [as 別名]
def test_invalid_shrinkage(shrinkage_data, wrong_func):
df, means = shrinkage_data
X, y = df.drop(columns="Target"), df["Target"]
with pytest.raises(ValueError) as e:
shrink_est = GroupedEstimator(
DummyRegressor(),
["Planet", "Country", "City"],
shrinkage=wrong_func,
use_global_model=False,
)
shrink_est.fit(X, y)
assert "Invalid shrinkage specified." in str(e)
示例14: test_unexisting_shrinkage_func
# 需要導入模塊: from sklearn import dummy [as 別名]
# 或者: from sklearn.dummy import DummyRegressor [as 別名]
def test_unexisting_shrinkage_func(shrinkage_data):
df, means = shrinkage_data
X, y = df.drop(columns="Target"), df["Target"]
with pytest.raises(ValueError) as e:
unexisting_func = "some_highly_unlikely_function_name"
shrink_est = GroupedEstimator(
estimator=DummyRegressor(),
groups=["Planet", "Country"],
shrinkage=unexisting_func,
)
shrink_est.fit(X, y)
assert "shrinkage function" in str(e)
示例15: test_unseen_groups_shrinkage
# 需要導入模塊: from sklearn import dummy [as 別名]
# 或者: from sklearn.dummy import DummyRegressor [as 別名]
def test_unseen_groups_shrinkage(shrinkage_data):
df, means = shrinkage_data
X, y = df.drop(columns="Target"), df["Target"]
shrink_est = GroupedEstimator(
DummyRegressor(), ["Planet", "Country", "City"], shrinkage="constant", alpha=0.1
)
shrink_est.fit(X, y)
unseen_group = pd.DataFrame(
{"Planet": ["Earth"], "Country": ["DE"], "City": ["Hamburg"]}
)
with pytest.raises(ValueError) as e:
shrink_est.predict(X=pd.concat([unseen_group] * 4, axis=0))
assert "found a group" in str(e)