當前位置: 首頁>>代碼示例>>Python>>正文


Python dummy.DummyRegressor方法代碼示例

本文整理匯總了Python中sklearn.dummy.DummyRegressor方法的典型用法代碼示例。如果您正苦於以下問題:Python dummy.DummyRegressor方法的具體用法?Python dummy.DummyRegressor怎麽用?Python dummy.DummyRegressor使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在sklearn.dummy的用法示例。


在下文中一共展示了dummy.DummyRegressor方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_multidimensional_X

# 需要導入模塊: from sklearn import dummy [as 別名]
# 或者: from sklearn.dummy import DummyRegressor [as 別名]
def test_multidimensional_X():
    """
    Check that the AdaBoost estimators can work with n-dimensional
    data matrix
    """

    from sklearn.dummy import DummyClassifier, DummyRegressor

    rng = np.random.RandomState(0)

    X = rng.randn(50, 3, 3)
    yc = rng.choice([0, 1], 50)
    yr = rng.randn(50)

    boost = AdaBoostClassifier(DummyClassifier(strategy='most_frequent'))
    boost.fit(X, yc)
    boost.predict(X)
    boost.predict_proba(X)

    boost = AdaBoostRegressor(DummyRegressor())
    boost.fit(X, yr)
    boost.predict(X) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:24,代碼來源:test_weight_boosting.py

示例2: test_notfitted

# 需要導入模塊: from sklearn import dummy [as 別名]
# 或者: from sklearn.dummy import DummyRegressor [as 別名]
def test_notfitted():
    eclf = VotingClassifier(estimators=[('lr1', LogisticRegression()),
                                        ('lr2', LogisticRegression())],
                            voting='soft')
    ereg = VotingRegressor([('dr', DummyRegressor())])
    msg = ("This %s instance is not fitted yet. Call \'fit\'"
           " with appropriate arguments before using this method.")
    assert_raise_message(NotFittedError, msg % 'VotingClassifier',
                         eclf.predict, X)
    assert_raise_message(NotFittedError, msg % 'VotingClassifier',
                         eclf.predict_proba, X)
    assert_raise_message(NotFittedError, msg % 'VotingClassifier',
                         eclf.transform, X)
    assert_raise_message(NotFittedError, msg % 'VotingRegressor',
                         ereg.predict, X_r)
    assert_raise_message(NotFittedError, msg % 'VotingRegressor',
                         ereg.transform, X_r) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:19,代碼來源:test_voting.py

示例3: test_median_strategy_multioutput_regressor

# 需要導入模塊: from sklearn import dummy [as 別名]
# 或者: from sklearn.dummy import DummyRegressor [as 別名]
def test_median_strategy_multioutput_regressor():

    random_state = np.random.RandomState(seed=1)

    X_learn = random_state.randn(10, 10)
    y_learn = random_state.randn(10, 5)

    median = np.median(y_learn, axis=0).reshape((1, -1))

    X_test = random_state.randn(20, 10)
    y_test = random_state.randn(20, 5)

    # Correctness oracle
    est = DummyRegressor(strategy="median")
    est.fit(X_learn, y_learn)
    y_pred_learn = est.predict(X_learn)
    y_pred_test = est.predict(X_test)

    _check_equality_regressor(
        median, y_learn, y_pred_learn, y_test, y_pred_test)
    _check_behavior_2d(est) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:23,代碼來源:test_dummy.py

示例4: test_quantile_strategy_regressor

# 需要導入模塊: from sklearn import dummy [as 別名]
# 或者: from sklearn.dummy import DummyRegressor [as 別名]
def test_quantile_strategy_regressor():

    random_state = np.random.RandomState(seed=1)

    X = [[0]] * 5  # ignored
    y = random_state.randn(5)

    reg = DummyRegressor(strategy="quantile", quantile=0.5)
    reg.fit(X, y)
    assert_array_equal(reg.predict(X), [np.median(y)] * len(X))

    reg = DummyRegressor(strategy="quantile", quantile=0)
    reg.fit(X, y)
    assert_array_equal(reg.predict(X), [np.min(y)] * len(X))

    reg = DummyRegressor(strategy="quantile", quantile=1)
    reg.fit(X, y)
    assert_array_equal(reg.predict(X), [np.max(y)] * len(X))

    reg = DummyRegressor(strategy="quantile", quantile=0.3)
    reg.fit(X, y)
    assert_array_equal(reg.predict(X), [np.percentile(y, q=30)] * len(X)) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:24,代碼來源:test_dummy.py

示例5: test_constant_strategy_multioutput_regressor

# 需要導入模塊: from sklearn import dummy [as 別名]
# 或者: from sklearn.dummy import DummyRegressor [as 別名]
def test_constant_strategy_multioutput_regressor():

    random_state = np.random.RandomState(seed=1)

    X_learn = random_state.randn(10, 10)
    y_learn = random_state.randn(10, 5)

    # test with 2d array
    constants = random_state.randn(5)

    X_test = random_state.randn(20, 10)
    y_test = random_state.randn(20, 5)

    # Correctness oracle
    est = DummyRegressor(strategy="constant", constant=constants)
    est.fit(X_learn, y_learn)
    y_pred_learn = est.predict(X_learn)
    y_pred_test = est.predict(X_test)

    _check_equality_regressor(
        constants, y_learn, y_pred_learn, y_test, y_pred_test)
    _check_behavior_2d_for_constant(est) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:24,代碼來源:test_dummy.py

示例6: test_dummy_regressor_sample_weight

# 需要導入模塊: from sklearn import dummy [as 別名]
# 或者: from sklearn.dummy import DummyRegressor [as 別名]
def test_dummy_regressor_sample_weight(n_samples=10):
    random_state = np.random.RandomState(seed=1)

    X = [[0]] * n_samples
    y = random_state.rand(n_samples)
    sample_weight = random_state.rand(n_samples)

    est = DummyRegressor(strategy="mean").fit(X, y, sample_weight)
    assert_equal(est.constant_, np.average(y, weights=sample_weight))

    est = DummyRegressor(strategy="median").fit(X, y, sample_weight)
    assert_equal(est.constant_, _weighted_percentile(y, sample_weight, 50.))

    est = DummyRegressor(strategy="quantile", quantile=.95).fit(X, y,
                                                                sample_weight)
    assert_equal(est.constant_, _weighted_percentile(y, sample_weight, 95.)) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:18,代碼來源:test_dummy.py

示例7: test_constant_shrinkage

# 需要導入模塊: from sklearn import dummy [as 別名]
# 或者: from sklearn.dummy import DummyRegressor [as 別名]
def test_constant_shrinkage(shrinkage_data):
    df, means = shrinkage_data

    X, y = df.drop(columns="Target"), df["Target"]

    shrink_est = GroupedEstimator(
        DummyRegressor(),
        ["Planet", "Country", "City"],
        shrinkage="constant",
        use_global_model=False,
        alpha=0.1,
    )

    shrinkage_factors = np.array([0.01, 0.09, 0.9])

    shrink_est.fit(X, y)

    expected_prediction = [
        np.array([means["Earth"], means["NL"], means["Amsterdam"]]) @ shrinkage_factors,
        np.array([means["Earth"], means["NL"], means["Rotterdam"]]) @ shrinkage_factors,
        np.array([means["Earth"], means["BE"], means["Antwerp"]]) @ shrinkage_factors,
        np.array([means["Earth"], means["BE"], means["Brussels"]]) @ shrinkage_factors,
    ]

    assert expected_prediction == shrink_est.predict(X).tolist() 
開發者ID:koaning,項目名稱:scikit-lego,代碼行數:27,代碼來源:test_grouped_model.py

示例8: test_relative_shrinkage

# 需要導入模塊: from sklearn import dummy [as 別名]
# 或者: from sklearn.dummy import DummyRegressor [as 別名]
def test_relative_shrinkage(shrinkage_data):
    df, means = shrinkage_data

    X, y = df.drop(columns="Target"), df["Target"]

    shrink_est = GroupedEstimator(
        DummyRegressor(),
        ["Planet", "Country", "City"],
        shrinkage="relative",
        use_global_model=False,
    )

    shrinkage_factors = np.array([4, 2, 1]) / 7

    shrink_est.fit(X, y)

    expected_prediction = [
        np.array([means["Earth"], means["NL"], means["Amsterdam"]]) @ shrinkage_factors,
        np.array([means["Earth"], means["NL"], means["Rotterdam"]]) @ shrinkage_factors,
        np.array([means["Earth"], means["BE"], means["Antwerp"]]) @ shrinkage_factors,
        np.array([means["Earth"], means["BE"], means["Brussels"]]) @ shrinkage_factors,
    ]

    assert expected_prediction == shrink_est.predict(X).tolist() 
開發者ID:koaning,項目名稱:scikit-lego,代碼行數:26,代碼來源:test_grouped_model.py

示例9: test_min_n_obs_shrinkage

# 需要導入模塊: from sklearn import dummy [as 別名]
# 或者: from sklearn.dummy import DummyRegressor [as 別名]
def test_min_n_obs_shrinkage(shrinkage_data):
    df, means = shrinkage_data

    X, y = df.drop(columns="Target"), df["Target"]

    shrink_est = GroupedEstimator(
        DummyRegressor(),
        ["Planet", "Country", "City"],
        shrinkage="min_n_obs",
        use_global_model=False,
        min_n_obs=2,
    )

    shrink_est.fit(X, y)

    expected_prediction = [means["NL"], means["NL"], means["BE"], means["BE"]]

    assert expected_prediction == shrink_est.predict(X).tolist() 
開發者ID:koaning,項目名稱:scikit-lego,代碼行數:20,代碼來源:test_grouped_model.py

示例10: test_min_n_obs_shrinkage_too_little_obs

# 需要導入模塊: from sklearn import dummy [as 別名]
# 或者: from sklearn.dummy import DummyRegressor [as 別名]
def test_min_n_obs_shrinkage_too_little_obs(shrinkage_data):
    df, means = shrinkage_data

    X, y = df.drop(columns="Target"), df["Target"]

    too_big_n_obs = X.shape[0] + 1

    shrink_est = GroupedEstimator(
        DummyRegressor(),
        ["Planet", "Country", "City"],
        shrinkage="min_n_obs",
        use_global_model=False,
        min_n_obs=too_big_n_obs,
    )

    with pytest.raises(ValueError) as e:
        shrink_est.fit(X, y)

        assert (
            f"There is no group with size greater than or equal to {too_big_n_obs}"
            in str(e)
        ) 
開發者ID:koaning,項目名稱:scikit-lego,代碼行數:24,代碼來源:test_grouped_model.py

示例11: test_custom_shrinkage_wrong_length

# 需要導入模塊: from sklearn import dummy [as 別名]
# 或者: from sklearn.dummy import DummyRegressor [as 別名]
def test_custom_shrinkage_wrong_length(shrinkage_data):
    df, means = shrinkage_data

    X, y = df.drop(columns="Target"), df["Target"]

    def shrinkage_func(group_sizes):
        n = len(group_sizes)
        return np.repeat(1 / n, n + 1)

    with pytest.raises(ValueError) as e:
        shrink_est = GroupedEstimator(
            DummyRegressor(),
            ["Planet", "Country", "City"],
            shrinkage=shrinkage_func,
            use_global_model=False,
        )

        shrink_est.fit(X, y)

        assert ".shape should be " in str(e) 
開發者ID:koaning,項目名稱:scikit-lego,代碼行數:22,代碼來源:test_grouped_model.py

示例12: test_custom_shrinkage_raises_error

# 需要導入模塊: from sklearn import dummy [as 別名]
# 或者: from sklearn.dummy import DummyRegressor [as 別名]
def test_custom_shrinkage_raises_error(shrinkage_data):
    df, means = shrinkage_data

    X, y = df.drop(columns="Target"), df["Target"]

    def shrinkage_func(group_sizes):
        raise KeyError("This function is bad and you should feel bad")

    with pytest.raises(ValueError) as e:
        shrink_est = GroupedEstimator(
            DummyRegressor(),
            ["Planet", "Country", "City"],
            shrinkage=shrinkage_func,
            use_global_model=False,
        )

        shrink_est.fit(X, y)

        assert "you should feel bad" in str(
            e
        ) and "while checking the shrinkage function" in str(e) 
開發者ID:koaning,項目名稱:scikit-lego,代碼行數:23,代碼來源:test_grouped_model.py

示例13: test_invalid_shrinkage

# 需要導入模塊: from sklearn import dummy [as 別名]
# 或者: from sklearn.dummy import DummyRegressor [as 別名]
def test_invalid_shrinkage(shrinkage_data, wrong_func):
    df, means = shrinkage_data

    X, y = df.drop(columns="Target"), df["Target"]

    with pytest.raises(ValueError) as e:
        shrink_est = GroupedEstimator(
            DummyRegressor(),
            ["Planet", "Country", "City"],
            shrinkage=wrong_func,
            use_global_model=False,
        )

        shrink_est.fit(X, y)

        assert "Invalid shrinkage specified." in str(e) 
開發者ID:koaning,項目名稱:scikit-lego,代碼行數:18,代碼來源:test_grouped_model.py

示例14: test_unexisting_shrinkage_func

# 需要導入模塊: from sklearn import dummy [as 別名]
# 或者: from sklearn.dummy import DummyRegressor [as 別名]
def test_unexisting_shrinkage_func(shrinkage_data):
    df, means = shrinkage_data

    X, y = df.drop(columns="Target"), df["Target"]

    with pytest.raises(ValueError) as e:
        unexisting_func = "some_highly_unlikely_function_name"

        shrink_est = GroupedEstimator(
            estimator=DummyRegressor(),
            groups=["Planet", "Country"],
            shrinkage=unexisting_func,
        )

        shrink_est.fit(X, y)

        assert "shrinkage function" in str(e) 
開發者ID:koaning,項目名稱:scikit-lego,代碼行數:19,代碼來源:test_grouped_model.py

示例15: test_unseen_groups_shrinkage

# 需要導入模塊: from sklearn import dummy [as 別名]
# 或者: from sklearn.dummy import DummyRegressor [as 別名]
def test_unseen_groups_shrinkage(shrinkage_data):
    df, means = shrinkage_data

    X, y = df.drop(columns="Target"), df["Target"]

    shrink_est = GroupedEstimator(
        DummyRegressor(), ["Planet", "Country", "City"], shrinkage="constant", alpha=0.1
    )

    shrink_est.fit(X, y)

    unseen_group = pd.DataFrame(
        {"Planet": ["Earth"], "Country": ["DE"], "City": ["Hamburg"]}
    )

    with pytest.raises(ValueError) as e:
        shrink_est.predict(X=pd.concat([unseen_group] * 4, axis=0))
        assert "found a group" in str(e) 
開發者ID:koaning,項目名稱:scikit-lego,代碼行數:20,代碼來源:test_grouped_model.py


注:本文中的sklearn.dummy.DummyRegressor方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。