當前位置: 首頁>>代碼示例>>Python>>正文


Python sklearn.discriminant_analysis方法代碼示例

本文整理匯總了Python中sklearn.discriminant_analysis方法的典型用法代碼示例。如果您正苦於以下問題:Python sklearn.discriminant_analysis方法的具體用法?Python sklearn.discriminant_analysis怎麽用?Python sklearn.discriminant_analysis使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在sklearn的用法示例。


在下文中一共展示了sklearn.discriminant_analysis方法的2個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import discriminant_analysis [as 別名]
def __init__(self, catalogueconstructor=None, selection=None, **params):

        cc = catalogueconstructor
        
        self.waveforms = cc.get_some_waveforms()
        
        if selection is None:
            #~ waveforms = self.waveforms
            raise NotImplementedError
        else:
            peaks_index, = np.nonzero(selection)
            waveforms = cc.get_some_waveforms(peaks_index=peaks_index)
            labels = cc.all_peaks[peaks_index]['cluster_label']
        
        flatten_waveforms = waveforms.reshape(waveforms.shape[0], -1)
        
        self.lda = sklearn.discriminant_analysis.LinearDiscriminantAnalysis()
        self.lda.fit(flatten_waveforms, labels)
        
        
        #In GlobalPCA all feature represent all channels
        self.channel_to_features = np.ones((cc.nb_channel, self.lda._max_components), dtype='bool') 
開發者ID:tridesclous,項目名稱:tridesclous,代碼行數:24,代碼來源:decomposition.py

示例2: init_classifier_impl

# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import discriminant_analysis [as 別名]
def init_classifier_impl(field_code: str, init_script: str):
    if init_script is not None:
        init_script = init_script.strip()

    if not init_script:
        from sklearn import tree as sklearn_tree
        return sklearn_tree.DecisionTreeClassifier()

    from sklearn import tree as sklearn_tree
    from sklearn import neural_network as sklearn_neural_network
    from sklearn import neighbors as sklearn_neighbors
    from sklearn import svm as sklearn_svm
    from sklearn import gaussian_process as sklearn_gaussian_process
    from sklearn.gaussian_process import kernels as sklearn_gaussian_process_kernels
    from sklearn import ensemble as sklearn_ensemble
    from sklearn import naive_bayes as sklearn_naive_bayes
    from sklearn import discriminant_analysis as sklearn_discriminant_analysis
    from sklearn import linear_model as sklearn_linear_model

    eval_locals = {
        'sklearn_linear_model': sklearn_linear_model,
        'sklearn_tree': sklearn_tree,
        'sklearn_neural_network': sklearn_neural_network,
        'sklearn_neighbors': sklearn_neighbors,
        'sklearn_svm': sklearn_svm,
        'sklearn_gaussian_process': sklearn_gaussian_process,
        'sklearn_gaussian_process_kernels': sklearn_gaussian_process_kernels,
        'sklearn_ensemble': sklearn_ensemble,
        'sklearn_naive_bayes': sklearn_naive_bayes,
        'sklearn_discriminant_analysis': sklearn_discriminant_analysis
    }
    return eval_script('classifier init script of field {0}'.format(field_code), init_script, eval_locals) 
開發者ID:LexPredict,項目名稱:lexpredict-contraxsuite,代碼行數:34,代碼來源:field_based_ml_field_detection.py


注:本文中的sklearn.discriminant_analysis方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。