本文整理匯總了Python中sklearn.decomposition方法的典型用法代碼示例。如果您正苦於以下問題:Python sklearn.decomposition方法的具體用法?Python sklearn.decomposition怎麽用?Python sklearn.decomposition使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類sklearn
的用法示例。
在下文中一共展示了sklearn.decomposition方法的11個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: __init__
# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import decomposition [as 別名]
def __init__(self, catalogueconstructor=None, selection=None, n_components=5, **params):
cc = catalogueconstructor
self.n_components = n_components
self.waveforms = cc.get_some_waveforms()
if selection is None:
waveforms = self.waveforms
#~ print('all selection', waveforms.shape[0])
else:
peaks_index, = np.nonzero(selection)
waveforms = cc.get_some_waveforms(peaks_index=peaks_index)
#~ print('subset selection', waveforms.shape[0])
flatten_waveforms = waveforms.reshape(waveforms.shape[0], -1)
#~ self.pca = sklearn.decomposition.IncrementalPCA(n_components=n_components, **params)
self.pca = sklearn.decomposition.TruncatedSVD(n_components=n_components, **params)
self.pca.fit(flatten_waveforms)
#In GlobalPCA all feature represent all channels
self.channel_to_features = np.ones((cc.nb_channel, self.n_components), dtype='bool')
示例2: transform
# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import decomposition [as 別名]
def transform(self, waveforms):
#~ print('ici', waveforms.shape, self.ind_peak)
features = waveforms[:, self.ind_peak, : ].copy()
return features
#~ Parallel(n_jobs=n_jobs)(delayed(count_match_spikes)(sorting1.get_unit_spike_train(u1),
#~ s2_spiketrains, delta_frames) for
#~ i1, u1 in enumerate(unit1_ids))
#~ def get_pca_one_channel(wf_chan, chan, thresh, n_left, n_components_by_channel, params):
#~ print(chan)
#~ pca = sklearn.decomposition.IncrementalPCA(n_components=n_components_by_channel, **params)
#~ wf_chan = waveforms[:,:,chan]
#~ print(wf_chan.shape)
#~ print(wf_chan[:, -n_left].shape)
#~ keep = np.any((wf_chan>thresh) | (wf_chan<-thresh))
#~ keep = (wf_chan[:, -n_left]>thresh) | (wf_chan[:, -n_left]<-thresh)
#~ if keep.sum() >=n_components_by_channel:
#~ pca.fit(wf_chan[keep, :])
#~ return pca
#~ else:
#~ return None
示例3: test_monkey_patching
# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import decomposition [as 別名]
def test_monkey_patching(self):
_tokens = daal4py.sklearn.sklearn_patch_names()
self.assertTrue(isinstance(_tokens, list) and len(_tokens) > 0)
for t in _tokens:
daal4py.sklearn.unpatch_sklearn(t)
for t in _tokens:
daal4py.sklearn.patch_sklearn(t)
import sklearn
for a in [(sklearn.decomposition, 'PCA'),
(sklearn.linear_model, 'Ridge'),
(sklearn.linear_model, 'LinearRegression'),
(sklearn.cluster, 'KMeans'),
(sklearn.svm, 'SVC'),]:
class_module = getattr(a[0], a[1]).__module__
self.assertTrue(class_module.startswith('daal4py'))
示例4: get_manifold
# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import decomposition [as 別名]
def get_manifold(data, manifold_type, **kwargs):
"""
Reduces number of dimensions.
Parameters
---------
data: pd.DataFrame
Dataframe with features for clustering indexed as in ``retention_config.index_col``
manifold_type: str
Name dimensionality reduction method from ``sklearn.decomposition`` and ``sklearn.manifold``
kwargs: optional
Parameters for ``sklearn.decomposition`` and ``sklearn.manifold`` methods.
Returns
--------
pd.DataFrame with reduced dimensions.
Return type
--------
pd.DataFrame
"""
if hasattr(decomposition, manifold_type):
man = getattr(decomposition, manifold_type)
elif hasattr(manifold, manifold_type):
man = getattr(manifold, manifold_type)
else:
raise ValueError(f'There is not such manifold {manifold_type}')
tsvd = man(**{i: j for i, j in kwargs.items() if i in man.get_params(man)})
res = tsvd.fit_transform(data)
return pd.DataFrame(res, index=data.index)
示例5: merge_features
# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import decomposition [as 別名]
def merge_features(features, metadata, meta_index_col=None, manifold_type=None, fillna=None, drop=False, **kwargs):
"""
Adds metadata to TFIDF of trajectories. Eeduced if ``manifold_type`` is not ``None``.
Parameters
--------
features: pd.DataFrame
Dataframe with users` metadata.
metadata: pd.DataFrame
Dataframe with user or session properties or any other information you would like to extract as features (e.g. user properties, LTV values, etc.). Default: ``None``
meta_index_col: str, optional
Used when metadata is not ``None``. Name of column in ``metadata`` dataframe that contains the same ID as in ``index_col``, or if not defined, same as in retention_config (e.g ID of users or sessions). If ``None``, then index of metadata dataframe is used instead. Default: ``None``
manifold_type: str, optional
Name dimensionality reduction method from ``sklearn.decomposition`` and ``sklearn.manifold``. Default: ``None``
fillna: optional
Value for filling missing metadata for any ``index_col`` value. Default: ``None``
drop: bool, optional
If ``True``, then drops users which do not exist in ``metadata`` dataframe. Default: ``False``
kwargs: optional
Keyword arguments for ``sklearn.decomposition`` and ``sklearn.manifold`` methods.
Returns
-------
Dataframe with trajectory features (possibly reduced) and users metadata.
Return type
-------
pd.DataFrame
"""
if manifold_type is not None:
features = get_manifold(features, manifold_type, **kwargs)
if meta_index_col is not None:
metadata.index = metadata[meta_index_col].values
metadata = metadata.drop(meta_index_col, 1)
res = features.join(metadata, rsuffix='_meta',)
if drop and (fillna is None):
res = res[res.isnull().sum(1) == 0].copy()
if fillna is not None:
res = res.fillna(fillna)
return res
示例6: _compute_one_dip_test
# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import decomposition [as 別名]
def _compute_one_dip_test(cc, dirname, chan_grp, label, n_components_local_pca, adjacency_radius_um):
# compute dip test to try to over split
from .dataio import DataIO
from .catalogueconstructor import CatalogueConstructor
if cc is None:
dataio = DataIO(dirname)
cc = CatalogueConstructor(dataio=dataio, chan_grp=chan_grp)
peak_sign = cc.info['peak_detector_params']['peak_sign']
dense_mode = cc.info['mode'] == 'dense'
n_left = cc.info['waveform_extractor_params']['n_left']
n_right = cc.info['waveform_extractor_params']['n_right']
peak_width = n_right - n_left
nb_channel = cc.nb_channel
if dense_mode:
channel_adjacency = {c: np.arange(nb_channel) for c in range(nb_channel)}
else:
channel_adjacency = {}
for c in range(nb_channel):
nearest, = np.nonzero(cc.channel_distances[c, :] < adjacency_radius_um)
channel_adjacency[c] = nearest
waveforms, wf_flat, peak_index = _get_sparse_waveforms_flatten(cc, dense_mode, label, channel_adjacency, n_spike_for_centroid=cc.n_spike_for_centroid)
#~ pca = sklearn.decomposition.IncrementalPCA(n_components=n_components_local_pca, whiten=True)
n_components = min(wf_flat.shape[1]-1, n_components_local_pca)
pca = sklearn.decomposition.TruncatedSVD(n_components=n_components)
feats = pca.fit_transform(wf_flat)
pval = diptest(np.sort(feats[:, 0]), numt=200)
return pval
示例7: transform
# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import decomposition [as 別名]
def transform(pca, X, whitenp=0.5, whitenv=None, whitenm=1.0, use_sklearn=True):
if use_sklearn:
# https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/decomposition/base.py#L99
if pca.mean_ is not None:
X = X - pca.mean_
X_transformed = np.dot(X, pca.components_[:whitenv].T)
if pca.whiten:
X_transformed /= whitenm * np.power(pca.explained_variance_[:whitenv], whitenp)
else:
X = X - pca['means']
X_transformed = np.dot(X, pca['W'])
return X_transformed
示例8: setUp
# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import decomposition [as 別名]
def setUp(self):
import sklearn.decomposition
import lale.lib.sklearn
from lale.operators import make_operator
self.sk_pca = make_operator(sklearn.decomposition.PCA, schemas={})
self.ll_pca = lale.lib.sklearn.PCA
self.maxDiff = None
示例9: __init__
# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import decomposition [as 別名]
def __init__(self, **hyperparams):
self._hyperparams = hyperparams
self._wrapped_model = sklearn.decomposition.PCA(**self._hyperparams)
示例10: dwt
# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import decomposition [as 別名]
def dwt(raw_eeg_data, level, **kwargs):
"""Multilevel Discrete Wavelet Transform (DWT).
Compute the DWT for a raw eeg signal on multiple levels.
Args:
raw_eeg_data (array_like): input data
level (int >= 0): decomposition levels
**kwargs: Additional arguments that will be forwarded to ``pywt.wavedec``
Returns:
A 2-element tuple containing
- **float**: mean value of the first decomposition coefficients
- **list**: list of mean values for the individual (detail) decomposition coefficients
"""
wt_coeffs = pywt.wavedec(data = raw_eeg_data, level=level, **kwargs)
# A7: 0 Hz - 1 Hz
cAL_mean = np.nanmean(wt_coeffs[0], axis=0)
details = []
# For Fs = 128 H
for i in range(1, level+1):
# D7: 1 Hz - 2 Hz
cDL_mean = np.nanmean(wt_coeffs[i], axis=0)
details.append(cDL_mean)
return cAL_mean, details
示例11: artifact_removal
# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import decomposition [as 別名]
def artifact_removal(X, n_components=None, check_result=True):
"""Remove artifacts from data.
The artifacts are detected via Independent Component Analysis (ICA) and
subsequently removed. To plot the results, use
:func:`gumpy.plot.artifact_removal`
Args:
X (array_like): Data to remove artifacts from
n_components (int): Number of components for ICA. If None is passed, all will be used
check_result (bool): Examine/test the ICA model by reverting the mixing.
Returns:
A 2-tuple containing
- **ndarray**: The reconstructed signal without artifacts.
- **ndarray**: The mixing matrix that wqas used by ICA.
"""
ica = sklearn.decomposition.FastICA(n_components)
S_reconst = ica.fit_transform(X)
A_mixing = ica.mixing_
if check_result:
assert np.allclose(X, np.dot(S_reconst, A_mixing.T) + ica.mean_)
return S_reconst, A_mixing