本文整理匯總了Python中sklearn.decomposition.LatentDirichletAllocation方法的典型用法代碼示例。如果您正苦於以下問題:Python decomposition.LatentDirichletAllocation方法的具體用法?Python decomposition.LatentDirichletAllocation怎麽用?Python decomposition.LatentDirichletAllocation使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類sklearn.decomposition
的用法示例。
在下文中一共展示了decomposition.LatentDirichletAllocation方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_lda_preplexity_mismatch
# 需要導入模塊: from sklearn import decomposition [as 別名]
# 或者: from sklearn.decomposition import LatentDirichletAllocation [as 別名]
def test_lda_preplexity_mismatch():
# test dimension mismatch in `perplexity` method
rng = np.random.RandomState(0)
n_components = rng.randint(3, 6)
n_samples = rng.randint(6, 10)
X = np.random.randint(4, size=(n_samples, 10))
lda = LatentDirichletAllocation(n_components=n_components,
learning_offset=5., total_samples=20,
random_state=rng)
lda.fit(X)
# invalid samples
invalid_n_samples = rng.randint(4, size=(n_samples + 1, n_components))
assert_raises_regexp(ValueError, r'Number of samples',
lda._perplexity_precomp_distr, X, invalid_n_samples)
# invalid topic number
invalid_n_components = rng.randint(4, size=(n_samples, n_components + 1))
assert_raises_regexp(ValueError, r'Number of topics',
lda._perplexity_precomp_distr, X,
invalid_n_components)
示例2: test_lda_perplexity
# 需要導入模塊: from sklearn import decomposition [as 別名]
# 或者: from sklearn.decomposition import LatentDirichletAllocation [as 別名]
def test_lda_perplexity(method):
# Test LDA perplexity for batch training
# perplexity should be lower after each iteration
n_components, X = _build_sparse_mtx()
lda_1 = LatentDirichletAllocation(n_components=n_components,
max_iter=1, learning_method=method,
total_samples=100, random_state=0)
lda_2 = LatentDirichletAllocation(n_components=n_components,
max_iter=10, learning_method=method,
total_samples=100, random_state=0)
lda_1.fit(X)
perp_1 = lda_1.perplexity(X, sub_sampling=False)
lda_2.fit(X)
perp_2 = lda_2.perplexity(X, sub_sampling=False)
assert_greater_equal(perp_1, perp_2)
perp_1_subsampling = lda_1.perplexity(X, sub_sampling=True)
perp_2_subsampling = lda_2.perplexity(X, sub_sampling=True)
assert_greater_equal(perp_1_subsampling, perp_2_subsampling)
示例3: test_lda_score
# 需要導入模塊: from sklearn import decomposition [as 別名]
# 或者: from sklearn.decomposition import LatentDirichletAllocation [as 別名]
def test_lda_score(method):
# Test LDA score for batch training
# score should be higher after each iteration
n_components, X = _build_sparse_mtx()
lda_1 = LatentDirichletAllocation(n_components=n_components,
max_iter=1, learning_method=method,
total_samples=100, random_state=0)
lda_2 = LatentDirichletAllocation(n_components=n_components,
max_iter=10, learning_method=method,
total_samples=100, random_state=0)
lda_1.fit_transform(X)
score_1 = lda_1.score(X)
lda_2.fit_transform(X)
score_2 = lda_2.score(X)
assert_greater_equal(score_2, score_1)
示例4: test_lda_fit_perplexity
# 需要導入模塊: from sklearn import decomposition [as 別名]
# 或者: from sklearn.decomposition import LatentDirichletAllocation [as 別名]
def test_lda_fit_perplexity():
# Test that the perplexity computed during fit is consistent with what is
# returned by the perplexity method
n_components, X = _build_sparse_mtx()
lda = LatentDirichletAllocation(n_components=n_components, max_iter=1,
learning_method='batch', random_state=0,
evaluate_every=1)
lda.fit(X)
# Perplexity computed at end of fit method
perplexity1 = lda.bound_
# Result of perplexity method on the train set
perplexity2 = lda.perplexity(X)
assert_almost_equal(perplexity1, perplexity2)
示例5: check_verbosity
# 需要導入模塊: from sklearn import decomposition [as 別名]
# 或者: from sklearn.decomposition import LatentDirichletAllocation [as 別名]
def check_verbosity(verbose, evaluate_every, expected_lines,
expected_perplexities):
n_components, X = _build_sparse_mtx()
lda = LatentDirichletAllocation(n_components=n_components, max_iter=3,
learning_method='batch',
verbose=verbose,
evaluate_every=evaluate_every,
random_state=0)
out = StringIO()
old_out, sys.stdout = sys.stdout, out
try:
lda.fit(X)
finally:
sys.stdout = old_out
n_lines = out.getvalue().count('\n')
n_perplexity = out.getvalue().count('perplexity')
assert_equal(expected_lines, n_lines)
assert_equal(expected_perplexities, n_perplexity)
示例6: word2vec
# 需要導入模塊: from sklearn import decomposition [as 別名]
# 或者: from sklearn.decomposition import LatentDirichletAllocation [as 別名]
def word2vec(word_list,n_features=1000,topics = 5):
tf_vectorizer = CountVectorizer(strip_accents='unicode',
max_features=n_features,
#stop_words='english',
max_df=0.5,
min_df=10)
tf = tf_vectorizer.fit_transform(word_list)
lda = LatentDirichletAllocation(n_components=topics,#主題數
learning_method='batch',#樣本量不大隻是用來學習的話用"batch"比較好,這樣可以少很多參數要調
)
#用變分貝葉斯方法訓練模型
lda.fit(tf)
#依次輸出每個主題的關鍵詞表
tf_feature_names = tf_vectorizer.get_feature_names()
return lda,tf,tf_feature_names,tf_vectorizer
#將主題以可視化結果展現出來
示例7: __init__
# 需要導入模塊: from sklearn import decomposition [as 別名]
# 或者: from sklearn.decomposition import LatentDirichletAllocation [as 別名]
def __init__(self, n_topics=50, estimator='LDA'):
"""
n_topics is the desired number of topics
To use Latent Semantic Analysis, set estimator to 'LSA',
To use Non-Negative Matrix Factorization, set estimator to 'NMF',
otherwise, defaults to Latent Dirichlet Allocation ('LDA').
"""
self.n_topics = n_topics
if estimator == 'LSA':
self.estimator = TruncatedSVD(n_components=self.n_topics)
elif estimator == 'NMF':
self.estimator = NMF(n_components=self.n_topics)
else:
self.estimator = LatentDirichletAllocation(n_topics=self.n_topics)
self.model = Pipeline([
('norm', TextNormalizer()),
('tfidf', CountVectorizer(tokenizer=identity,
preprocessor=None, lowercase=False)),
('model', self.estimator)
])
示例8: train_lda
# 需要導入模塊: from sklearn import decomposition [as 別名]
# 或者: from sklearn.decomposition import LatentDirichletAllocation [as 別名]
def train_lda(corpus, n_topics=10, max_df=0.95, min_df=2,
cleaning=clearstring, stop_words='english'):
if cleaning is not None:
for i in range(len(corpus)):
corpus[i] = cleaning(corpus[i])
tf_vectorizer = CountVectorizer(
max_df=max_df,
min_df=min_df,
stop_words=stop_words)
tf = tf_vectorizer.fit_transform(corpus)
tf_features = tf_vectorizer.get_feature_names()
lda = LatentDirichletAllocation(
n_topics=n_topics,
max_iter=5,
learning_method='online',
learning_offset=50.,
random_state=0).fit(tf)
return TOPIC(tf_features, lda)
示例9: test_objectmapper
# 需要導入模塊: from sklearn import decomposition [as 別名]
# 或者: from sklearn.decomposition import LatentDirichletAllocation [as 別名]
def test_objectmapper(self):
df = pdml.ModelFrame([])
self.assertIs(df.decomposition.PCA, decomposition.PCA)
self.assertIs(df.decomposition.IncrementalPCA,
decomposition.IncrementalPCA)
self.assertIs(df.decomposition.KernelPCA, decomposition.KernelPCA)
self.assertIs(df.decomposition.FactorAnalysis,
decomposition.FactorAnalysis)
self.assertIs(df.decomposition.FastICA, decomposition.FastICA)
self.assertIs(df.decomposition.TruncatedSVD, decomposition.TruncatedSVD)
self.assertIs(df.decomposition.NMF, decomposition.NMF)
self.assertIs(df.decomposition.SparsePCA, decomposition.SparsePCA)
self.assertIs(df.decomposition.MiniBatchSparsePCA,
decomposition.MiniBatchSparsePCA)
self.assertIs(df.decomposition.SparseCoder, decomposition.SparseCoder)
self.assertIs(df.decomposition.DictionaryLearning,
decomposition.DictionaryLearning)
self.assertIs(df.decomposition.MiniBatchDictionaryLearning,
decomposition.MiniBatchDictionaryLearning)
self.assertIs(df.decomposition.LatentDirichletAllocation,
decomposition.LatentDirichletAllocation)
示例10: test_lda_perplexity
# 需要導入模塊: from sklearn import decomposition [as 別名]
# 或者: from sklearn.decomposition import LatentDirichletAllocation [as 別名]
def test_lda_perplexity():
# Test LDA perplexity for batch training
# perplexity should be lower after each iteration
n_components, X = _build_sparse_mtx()
for method in ('online', 'batch'):
lda_1 = LatentDirichletAllocation(n_components=n_components,
max_iter=1, learning_method=method,
total_samples=100, random_state=0)
lda_2 = LatentDirichletAllocation(n_components=n_components,
max_iter=10, learning_method=method,
total_samples=100, random_state=0)
lda_1.fit(X)
perp_1 = lda_1.perplexity(X, sub_sampling=False)
lda_2.fit(X)
perp_2 = lda_2.perplexity(X, sub_sampling=False)
assert_greater_equal(perp_1, perp_2)
perp_1_subsampling = lda_1.perplexity(X, sub_sampling=True)
perp_2_subsampling = lda_2.perplexity(X, sub_sampling=True)
assert_greater_equal(perp_1_subsampling, perp_2_subsampling)
示例11: test_lda_score
# 需要導入模塊: from sklearn import decomposition [as 別名]
# 或者: from sklearn.decomposition import LatentDirichletAllocation [as 別名]
def test_lda_score():
# Test LDA score for batch training
# score should be higher after each iteration
n_components, X = _build_sparse_mtx()
for method in ('online', 'batch'):
lda_1 = LatentDirichletAllocation(n_components=n_components,
max_iter=1, learning_method=method,
total_samples=100, random_state=0)
lda_2 = LatentDirichletAllocation(n_components=n_components,
max_iter=10, learning_method=method,
total_samples=100, random_state=0)
lda_1.fit_transform(X)
score_1 = lda_1.score(X)
lda_2.fit_transform(X)
score_2 = lda_2.score(X)
assert_greater_equal(score_2, score_1)
示例12: test_evaluation_sklearn_all_metrics
# 需要導入模塊: from sklearn import decomposition [as 別名]
# 或者: from sklearn.decomposition import LatentDirichletAllocation [as 別名]
def test_evaluation_sklearn_all_metrics():
passed_params = {'n_components', 'learning_method', 'evaluate_every', 'max_iter', 'n_jobs', 'random_state'}
varying_params = [dict(n_components=k) for k in range(2, 5)]
const_params = dict(learning_method='batch', evaluate_every=1, max_iter=3, n_jobs=1, random_state=1)
evaluate_topic_models_kwargs = dict(
metric=tm_sklearn.AVAILABLE_METRICS,
held_out_documents_wallach09_n_samples=10,
held_out_documents_wallach09_n_folds=2,
coherence_gensim_vocab=EVALUATION_TEST_VOCAB,
coherence_gensim_texts=EVALUATION_TEST_TOKENS,
return_models=True,
)
eval_res = tm_sklearn.evaluate_topic_models(EVALUATION_TEST_DTM, varying_params, const_params,
**evaluate_topic_models_kwargs)
assert len(eval_res) == len(varying_params)
for param_set, metric_results in eval_res:
assert set(param_set.keys()) == passed_params
assert set(metric_results.keys()) == set(tm_sklearn.AVAILABLE_METRICS + ('model',))
assert metric_results['perplexity'] > 0
assert 0 <= metric_results['cao_juan_2009'] <= 1
assert 0 <= metric_results['arun_2010']
assert metric_results['coherence_mimno_2011'] < 0
assert np.isclose(metric_results['coherence_gensim_u_mass'], metric_results['coherence_mimno_2011'])
assert 0 <= metric_results['coherence_gensim_c_v'] <= 1
assert metric_results['coherence_gensim_c_uci'] < 0
assert metric_results['coherence_gensim_c_npmi'] < 0
if 'held_out_documents_wallach09' in tm_lda.AVAILABLE_METRICS: # only if gmpy2 is installed
assert metric_results['held_out_documents_wallach09'] < 0
assert isinstance(metric_results['model'], LatentDirichletAllocation)
示例13: test_compute_models_parallel_sklearn
# 需要導入模塊: from sklearn import decomposition [as 別名]
# 或者: from sklearn.decomposition import LatentDirichletAllocation [as 別名]
def test_compute_models_parallel_sklearn():
passed_params = {'n_components', 'learning_method', 'evaluate_every', 'max_iter', 'n_jobs'}
varying_params = [dict(n_components=k) for k in range(2, 5)]
const_params = dict(learning_method='batch', evaluate_every=1, max_iter=3, n_jobs=1)
models = tm_sklearn.compute_models_parallel(EVALUATION_TEST_DTM, varying_params, const_params)
assert len(models) == len(varying_params)
for param_set, model in models:
assert set(param_set.keys()) == passed_params
assert isinstance(model, LatentDirichletAllocation)
assert isinstance(model.components_, np.ndarray)
示例14: fitTopicModel
# 需要導入模塊: from sklearn import decomposition [as 別名]
# 或者: from sklearn.decomposition import LatentDirichletAllocation [as 別名]
def fitTopicModel(self, numTopics, max_iter=100, **kwargs):
self.lda = LatentDirichletAllocation(n_topics=numTopics,learning_method=self.learningMethod,random_state=self.seed,
n_jobs=1, max_iter=max_iter, batch_size=self.chunksize, **kwargs)
if self.fragM.shape[0] > self.chunksize:
# fit the model in chunks
self.lda.learning_method = 'online'
self.lda.fit(self.fragM)
else:
self.lda.fit(self.fragM)
示例15: learn_topics
# 需要導入模塊: from sklearn import decomposition [as 別名]
# 或者: from sklearn.decomposition import LatentDirichletAllocation [as 別名]
def learn_topics(X, X_dev, K=50):
lda = LatentDirichletAllocation(n_components=K, learning_method='online', verbose=1)
print("Fitting", K, "topics...")
lda.fit(X)
score = lda.perplexity(X_dev)
print("Log likelihood:", score)
topics = lda.components_
return score, lda, topics