本文整理匯總了Python中sklearn.decomposition.FastICA方法的典型用法代碼示例。如果您正苦於以下問題:Python decomposition.FastICA方法的具體用法?Python decomposition.FastICA怎麽用?Python decomposition.FastICA使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類sklearn.decomposition
的用法示例。
在下文中一共展示了decomposition.FastICA方法的8個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: fit_fastICA
# 需要導入模塊: from sklearn import decomposition [as 別名]
# 或者: from sklearn.decomposition import FastICA [as 別名]
def fit_fastICA(data):
'''
Fit the model with fast ICA principal components
'''
# keyword parameters for the PCA
kwrd_params = {
'n_components': 5,
'algorithm': 'parallel',
'whiten': True
}
# reduce the data
reduced = reduceDimensions(cd.FastICA,
data, **kwrd_params)
# prepare the data for the classifier
data_l = prepare_data(data, reduced,
kwrd_params['n_components'])
# fit the model
class_fit_predict_print(data_l)
示例2: dim_reduction_method
# 需要導入模塊: from sklearn import decomposition [as 別名]
# 或者: from sklearn.decomposition import FastICA [as 別名]
def dim_reduction_method(self):
"""
select dimensionality reduction method
"""
if self.dim_reduction=='pca':
return PCA()
elif self.dim_reduction=='factor-analysis':
return FactorAnalysis()
elif self.dim_reduction=='fast-ica':
return FastICA()
elif self.dim_reduction=='kernel-pca':
return KernelPCA()
elif self.dim_reduction=='sparse-pca':
return SparsePCA()
elif self.dim_reduction=='truncated-svd':
return TruncatedSVD()
elif self.dim_reduction!=None:
raise ValueError('%s is not a supported dimensionality reduction method. Valid inputs are: \
"pca","factor-analysis","fast-ica,"kernel-pca","sparse-pca","truncated-svd".'
%(self.dim_reduction))
示例3: test_objectmapper
# 需要導入模塊: from sklearn import decomposition [as 別名]
# 或者: from sklearn.decomposition import FastICA [as 別名]
def test_objectmapper(self):
df = pdml.ModelFrame([])
self.assertIs(df.decomposition.PCA, decomposition.PCA)
self.assertIs(df.decomposition.IncrementalPCA,
decomposition.IncrementalPCA)
self.assertIs(df.decomposition.KernelPCA, decomposition.KernelPCA)
self.assertIs(df.decomposition.FactorAnalysis,
decomposition.FactorAnalysis)
self.assertIs(df.decomposition.FastICA, decomposition.FastICA)
self.assertIs(df.decomposition.TruncatedSVD, decomposition.TruncatedSVD)
self.assertIs(df.decomposition.NMF, decomposition.NMF)
self.assertIs(df.decomposition.SparsePCA, decomposition.SparsePCA)
self.assertIs(df.decomposition.MiniBatchSparsePCA,
decomposition.MiniBatchSparsePCA)
self.assertIs(df.decomposition.SparseCoder, decomposition.SparseCoder)
self.assertIs(df.decomposition.DictionaryLearning,
decomposition.DictionaryLearning)
self.assertIs(df.decomposition.MiniBatchDictionaryLearning,
decomposition.MiniBatchDictionaryLearning)
self.assertIs(df.decomposition.LatentDirichletAllocation,
decomposition.LatentDirichletAllocation)
示例4: ICA
# 需要導入模塊: from sklearn import decomposition [as 別名]
# 或者: from sklearn.decomposition import FastICA [as 別名]
def ICA(data, dim):
ica = FastICA(n_components=dim)
ica.fit(data)
return ica.transform(data)
示例5: bsoid_umap_embed
# 需要導入模塊: from sklearn import decomposition [as 別名]
# 或者: from sklearn.decomposition import FastICA [as 別名]
def bsoid_umap_embed(f_10fps_sc, umap_params=UMAP_PARAMS):
"""
Trains UMAP (unsupervised) given a set of features based on (x,y) positions
:param f_10fps_sc: 2D array, standardized/session features
:param umap_params: dict, UMAP params in GLOBAL_CONFIG
:return trained_umap: object, trained UMAP transformer
:return umap_embeddings: 2D array, embedded UMAP space
"""
###### So far, use of PCA is not necessary. If, however, features go beyond 100, consider taking top 50 PCs #####
# if f_10fps_sc.shape[0] > 50:
# logging.info('Compressing {} instances from {} D '
# 'into {} D using PCA'.format(f_10fps_sc.shape[1], f_10fps_sc.shape[0],
# 50))
# feats_train = PCA(n_components=50, random_state=23).fit_transform(f_10fps_sc.T)
# pca = PCA(n_components=50).fit(f_10fps_sc.T)
# logging.info('Done linear transformation with PCA.')
# logging.info('The top {} Principal Components '
# 'explained {}% variance'.format(50, 100 * np.sum(pca.explained_variance_ratio_)))
################ FastICA potentially useful for demixing signal ################
# lowd_feats = FastICA(n_components=10, random_state=23).fit_transform(f_10fps.T)
# feats_train = lowd_feats
feats_train = f_10fps_sc.T
logging.info('Transforming all {} instances from {} D into {} D'.format(feats_train.shape[0],
feats_train.shape[1],
umap_params.get('n_components')))
trained_umap = umap.UMAP(n_neighbors=int(round(np.sqrt(feats_train.shape[0]))), # power law
**umap_params).fit(feats_train)
umap_embeddings = trained_umap.embedding_
logging.info('Done non-linear transformation with UMAP from {} D into {} D.'.format(feats_train.shape[1],
umap_embeddings.shape[1]))
return trained_umap, umap_embeddings
示例6: __init__
# 需要導入模塊: from sklearn import decomposition [as 別名]
# 或者: from sklearn.decomposition import FastICA [as 別名]
def __init__(self, **kwargs):
super().__init__()
self.estimator = sk_d.FastICA(**kwargs)
示例7: calculate
# 需要導入模塊: from sklearn import decomposition [as 別名]
# 或者: from sklearn.decomposition import FastICA [as 別名]
def calculate(self, n_components: int = 4, **kwargs) -> Tuple[np.ndarray, np.ndarray]:
if n_components is None:
n_components = self.X.shape[-1]
mdl = FastICA(n_components=n_components, **kwargs)
self.ims = mdl.fit_transform(self.X.collapse()).reshape(self.X.data.shape[:-1] + (n_components,))
self.spcs = mdl.components_.transpose()
return self.ims, self.spcs
示例8: img2_coord
# 需要導入模塊: from sklearn import decomposition [as 別名]
# 或者: from sklearn.decomposition import FastICA [as 別名]
def img2_coord(img, init=None):
assert np.max(img) <= 1.0
if init is None:
init = np.zeros((img.shape[0] + 200, img.shape[1] + 200))
init[100:-100, 100:-100] = img
img = init
img_size = img.shape[0]
tile_x = np.tile(np.arange(img_size), (img_size, 1))
tile_y = tile_x.T
mean_x = np.sum(img * tile_x) / np.sum(img)
mean_y = np.sum(img * tile_y) / np.sum(img)
dist_mean_x = np.abs(mean_x - tile_x) * img
dist_mean_y = np.abs(mean_y - tile_y) * img
hypo = np.max(((dist_mean_x * dist_mean_x) + (dist_mean_y * dist_mean_y)))
diff_mean_x = tile_x[img > 0].flatten() - mean_x
diff_mean_y = tile_y[img > 0].flatten() - mean_y
m = np.stack([diff_mean_x, diff_mean_y])
decomposer = FastICA(2)
decomposer.fit(m.T)
Uica = decomposer.mixing_
# print('ICA vectors')
norms = np.sqrt((Uica ** 2).sum(axis=0))
Uica = Uica / np.sqrt((Uica ** 2).sum(axis=0))
if norms[0] > norms[1]:
rotate = -np.arctan2(Uica[0, 0], Uica[1, 0])
else:
rotate = -np.arctan2(Uica[0, 1], Uica[1, 1])
# represent between [-math.pi, math.pi]
if rotate < -math.pi / 2:
rotate += math.pi
elif rotate > math.pi / 2:
rotate -= math.pi
# print('rotate: {:.2f} [deg]'.format(rotate * 360 / 2 / 3.14))
aspect_ratio = max(norms) / min(norms)
# print('aspect ratio: {:.2f}'.format(aspect_ratio))
width = np.sqrt(hypo / (1 + aspect_ratio**2)) * 2 + 0.25
# height = np.sqrt(hypo * aspect_ratio**2 / (1 + aspect_ratio**2)) * 2
height = width * aspect_ratio
# print('width: {} height: {}'.format(width, height))
return mean_x, mean_y, height, aspect_ratio, rotate, img_size