當前位置: 首頁>>代碼示例>>Python>>正文


Python samples_generator.make_blobs方法代碼示例

本文整理匯總了Python中sklearn.datasets.samples_generator.make_blobs方法的典型用法代碼示例。如果您正苦於以下問題:Python samples_generator.make_blobs方法的具體用法?Python samples_generator.make_blobs怎麽用?Python samples_generator.make_blobs使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在sklearn.datasets.samples_generator的用法示例。


在下文中一共展示了samples_generator.make_blobs方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: make_easy_visual_data

# 需要導入模塊: from sklearn.datasets import samples_generator [as 別名]
# 或者: from sklearn.datasets.samples_generator import make_blobs [as 別名]
def make_easy_visual_data(path, N=600):
    """Make 3 clusters of 2D data where the cluster centers lie along a line.
    The latent variable would be just their x or y value since that uniquely defines their projection onto the line.
    """

    line = (1.5, 1)
    centers = [(m, m * line[0] + line[1]) for m in (-4, 0, 6)]
    cluster_std = [1, 1, 1.5]
    X, labels = make_blobs(n_samples=N, cluster_std=cluster_std, centers=centers, n_features=len(centers[0]))

    # scale data
    minmaxscale = MinMaxScaler().fit(X)
    X = minmaxscale.transform(X)

    save_misc_data(path, X, labels, N)
    return X, labels 
開發者ID:shahsohil,項目名稱:DCC,代碼行數:18,代碼來源:make_data.py

示例2: test_dbscan_optics_parity

# 需要導入模塊: from sklearn.datasets import samples_generator [as 別名]
# 或者: from sklearn.datasets.samples_generator import make_blobs [as 別名]
def test_dbscan_optics_parity(eps, min_samples):
    # Test that OPTICS clustering labels are <= 5% difference of DBSCAN

    centers = [[1, 1], [-1, -1], [1, -1]]
    X, labels_true = make_blobs(n_samples=750, centers=centers,
                                cluster_std=0.4, random_state=0)

    # calculate optics with dbscan extract at 0.3 epsilon
    op = OPTICS(min_samples=min_samples, cluster_method='dbscan',
                eps=eps).fit(X)

    # calculate dbscan labels
    db = DBSCAN(eps=eps, min_samples=min_samples).fit(X)

    contingency = contingency_matrix(db.labels_, op.labels_)
    agree = min(np.sum(np.max(contingency, axis=0)),
                np.sum(np.max(contingency, axis=1)))
    disagree = X.shape[0] - agree

    percent_mismatch = np.round((disagree - 1) / X.shape[0], 2)

    # verify label mismatch is <= 5% labels
    assert percent_mismatch <= 0.05 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:25,代碼來源:test_optics.py

示例3: test_elkan_results

# 需要導入模塊: from sklearn.datasets import samples_generator [as 別名]
# 或者: from sklearn.datasets.samples_generator import make_blobs [as 別名]
def test_elkan_results(distribution):
    # check that results are identical between lloyd and elkan algorithms
    rnd = np.random.RandomState(0)
    if distribution == 'normal':
        X = rnd.normal(size=(50, 10))
    else:
        X, _ = make_blobs(random_state=rnd)

    km_full = KMeans(algorithm='full', n_clusters=5, random_state=0, n_init=1)
    km_elkan = KMeans(algorithm='elkan', n_clusters=5,
                      random_state=0, n_init=1)

    km_full.fit(X)
    km_elkan.fit(X)
    assert_array_almost_equal(km_elkan.cluster_centers_,
                              km_full.cluster_centers_)
    assert_array_equal(km_elkan.labels_, km_full.labels_) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:19,代碼來源:test_k_means.py

示例4: test_minibatch_sensible_reassign_fit

# 需要導入模塊: from sklearn.datasets import samples_generator [as 別名]
# 或者: from sklearn.datasets.samples_generator import make_blobs [as 別名]
def test_minibatch_sensible_reassign_fit():
    # check if identical initial clusters are reassigned
    # also a regression test for when there are more desired reassignments than
    # samples.
    zeroed_X, true_labels = make_blobs(n_samples=100, centers=5,
                                       cluster_std=1., random_state=42)
    zeroed_X[::2, :] = 0
    mb_k_means = MiniBatchKMeans(n_clusters=20, batch_size=10, random_state=42,
                                 init="random")
    mb_k_means.fit(zeroed_X)
    # there should not be too many exact zero cluster centers
    assert_greater(mb_k_means.cluster_centers_.any(axis=1).sum(), 10)

    # do the same with batch-size > X.shape[0] (regression test)
    mb_k_means = MiniBatchKMeans(n_clusters=20, batch_size=201,
                                 random_state=42, init="random")
    mb_k_means.fit(zeroed_X)
    # there should not be too many exact zero cluster centers
    assert_greater(mb_k_means.cluster_centers_.any(axis=1).sum(), 10) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:21,代碼來源:test_k_means.py

示例5: test_affinity_propagation_class

# 需要導入模塊: from sklearn.datasets import samples_generator [as 別名]
# 或者: from sklearn.datasets.samples_generator import make_blobs [as 別名]
def test_affinity_propagation_class(self):
        from sklearn.datasets.samples_generator import make_blobs

        centers = [[1, 1], [-1, -1], [1, -1]]
        X, labels_true = make_blobs(n_samples=300, centers=centers,
                                    cluster_std=0.5, random_state=0)

        df = pdml.ModelFrame(data=X, target=labels_true)
        af = df.cluster.AffinityPropagation(preference=-50)
        df.fit(af)

        af2 = cluster.AffinityPropagation(preference=-50).fit(X)

        tm.assert_numpy_array_equal(af.cluster_centers_indices_,
                                    af2.cluster_centers_indices_)
        tm.assert_numpy_array_equal(af.labels_, af2.labels_) 
開發者ID:pandas-ml,項目名稱:pandas-ml,代碼行數:18,代碼來源:test_cluster.py

示例6: test_spectral_unknown_mode

# 需要導入模塊: from sklearn.datasets import samples_generator [as 別名]
# 或者: from sklearn.datasets.samples_generator import make_blobs [as 別名]
def test_spectral_unknown_mode():
    # Test that SpectralClustering fails with an unknown mode set.
    centers = np.array([
        [0., 0., 0.],
        [10., 10., 10.],
        [20., 20., 20.],
    ])
    X, true_labels = make_blobs(n_samples=100, centers=centers,
                                cluster_std=1., random_state=42)
    D = pairwise_distances(X)  # Distance matrix
    S = np.max(D) - D  # Similarity matrix
    S = sparse.coo_matrix(S)
    assert_raises(ValueError, spectral_clustering, S, n_clusters=2,
                  random_state=0, eigen_solver="<unknown>") 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:16,代碼來源:test_spectral.py

示例7: test_spectral_unknown_assign_labels

# 需要導入模塊: from sklearn.datasets import samples_generator [as 別名]
# 或者: from sklearn.datasets.samples_generator import make_blobs [as 別名]
def test_spectral_unknown_assign_labels():
    # Test that SpectralClustering fails with an unknown assign_labels set.
    centers = np.array([
        [0., 0., 0.],
        [10., 10., 10.],
        [20., 20., 20.],
    ])
    X, true_labels = make_blobs(n_samples=100, centers=centers,
                                cluster_std=1., random_state=42)
    D = pairwise_distances(X)  # Distance matrix
    S = np.max(D) - D  # Similarity matrix
    S = sparse.coo_matrix(S)
    assert_raises(ValueError, spectral_clustering, S, n_clusters=2,
                  random_state=0, assign_labels="<unknown>") 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:16,代碼來源:test_spectral.py

示例8: test_spectral_clustering_sparse

# 需要導入模塊: from sklearn.datasets import samples_generator [as 別名]
# 或者: from sklearn.datasets.samples_generator import make_blobs [as 別名]
def test_spectral_clustering_sparse():
    X, y = make_blobs(n_samples=20, random_state=0,
                      centers=[[1, 1], [-1, -1]], cluster_std=0.01)

    S = rbf_kernel(X, gamma=1)
    S = np.maximum(S - 1e-4, 0)
    S = sparse.coo_matrix(S)

    labels = SpectralClustering(random_state=0, n_clusters=2,
                                affinity='precomputed').fit(S).labels_
    assert adjusted_rand_score(y, labels) == 1 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:13,代碼來源:test_spectral.py

示例9: test_parallel

# 需要導入模塊: from sklearn.datasets import samples_generator [as 別名]
# 或者: from sklearn.datasets.samples_generator import make_blobs [as 別名]
def test_parallel():
    centers = np.array([[1, 1], [-1, -1], [1, -1]]) + 10
    X, _ = make_blobs(n_samples=50, n_features=2, centers=centers,
                      cluster_std=0.4, shuffle=True, random_state=11)

    ms1 = MeanShift(n_jobs=2)
    ms1.fit(X)

    ms2 = MeanShift()
    ms2.fit(X)

    assert_array_almost_equal(ms1.cluster_centers_, ms2.cluster_centers_)
    assert_array_equal(ms1.labels_, ms2.labels_) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:15,代碼來源:test_mean_shift.py

示例10: test_bad_extract

# 需要導入模塊: from sklearn.datasets import samples_generator [as 別名]
# 或者: from sklearn.datasets.samples_generator import make_blobs [as 別名]
def test_bad_extract():
    # Test an extraction of eps too close to original eps
    msg = "Specify an epsilon smaller than 0.15. Got 0.3."
    centers = [[1, 1], [-1, -1], [1, -1]]
    X, labels_true = make_blobs(n_samples=750, centers=centers,
                                cluster_std=0.4, random_state=0)

    # Compute OPTICS
    clust = OPTICS(max_eps=5.0 * 0.03,
                   cluster_method='dbscan',
                   eps=0.3, min_samples=10)
    assert_raise_message(ValueError, msg, clust.fit, X) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:14,代碼來源:test_optics.py

示例11: test_bad_reachability

# 需要導入模塊: from sklearn.datasets import samples_generator [as 別名]
# 或者: from sklearn.datasets.samples_generator import make_blobs [as 別名]
def test_bad_reachability():
    msg = "All reachability values are inf. Set a larger max_eps."
    centers = [[1, 1], [-1, -1], [1, -1]]
    X, labels_true = make_blobs(n_samples=750, centers=centers,
                                cluster_std=0.4, random_state=0)

    with pytest.warns(UserWarning, match=msg):
        clust = OPTICS(max_eps=5.0 * 0.003, min_samples=10, eps=0.015)
        clust.fit(X) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:11,代碼來源:test_optics.py

示例12: test_close_extract

# 需要導入模塊: from sklearn.datasets import samples_generator [as 別名]
# 或者: from sklearn.datasets.samples_generator import make_blobs [as 別名]
def test_close_extract():
    # Test extract where extraction eps is close to scaled max_eps

    centers = [[1, 1], [-1, -1], [1, -1]]
    X, labels_true = make_blobs(n_samples=750, centers=centers,
                                cluster_std=0.4, random_state=0)

    # Compute OPTICS
    clust = OPTICS(max_eps=1.0, cluster_method='dbscan',
                   eps=0.3, min_samples=10).fit(X)
    # Cluster ordering starts at 0; max cluster label = 2 is 3 clusters
    assert_equal(max(clust.labels_), 2) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:14,代碼來源:test_optics.py

示例13: test_minibatch_sensible_reassign_partial_fit

# 需要導入模塊: from sklearn.datasets import samples_generator [as 別名]
# 或者: from sklearn.datasets.samples_generator import make_blobs [as 別名]
def test_minibatch_sensible_reassign_partial_fit():
    zeroed_X, true_labels = make_blobs(n_samples=n_samples, centers=5,
                                       cluster_std=1., random_state=42)
    zeroed_X[::2, :] = 0
    mb_k_means = MiniBatchKMeans(n_clusters=20, random_state=42, init="random")
    for i in range(100):
        mb_k_means.partial_fit(zeroed_X)
    # there should not be too many exact zero cluster centers
    assert_greater(mb_k_means.cluster_centers_.any(axis=1).sum(), 10) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:11,代碼來源:test_k_means.py

示例14: random_classification_problem

# 需要導入模塊: from sklearn.datasets import samples_generator [as 別名]
# 或者: from sklearn.datasets.samples_generator import make_blobs [as 別名]
def random_classification_problem(n_ex, n_classes, n_in, seed=0):
    X, y = make_blobs(
        n_samples=n_ex, centers=n_classes, n_features=n_in, random_state=seed
    )
    X_train, X_test, y_train, y_test = train_test_split(
        X, y, test_size=0.3, random_state=seed
    )
    return X_train, y_train, X_test, y_test


#######################################################################
#                                Plots                                #
####################################################################### 
開發者ID:ddbourgin,項目名稱:numpy-ml,代碼行數:15,代碼來源:lm_plots.py

示例15: plot

# 需要導入模塊: from sklearn.datasets import samples_generator [as 別名]
# 或者: from sklearn.datasets.samples_generator import make_blobs [as 別名]
def plot():
    fig, axes = plt.subplots(4, 4)
    fig.set_size_inches(10, 10)
    for i, ax in enumerate(axes.flatten()):
        n_ex = 150
        n_in = 2
        n_classes = np.random.randint(2, 4)
        X, y = make_blobs(
            n_samples=n_ex, centers=n_classes, n_features=n_in, random_state=i
        )
        X -= X.mean(axis=0)

        # take best fit over 10 runs
        best_elbo = -np.inf
        for k in range(10):
            _G = GMM(C=n_classes, seed=i * 3)
            ret = _G.fit(X, max_iter=100, verbose=False)
            while ret != 0:
                print("Components collapsed; Refitting")
                ret = _G.fit(X, max_iter=100, verbose=False)

            if _G.best_elbo > best_elbo:
                best_elbo = _G.best_elbo
                G = _G

        ax = plot_clusters(G, X, ax)
        ax.xaxis.set_ticklabels([])
        ax.yaxis.set_ticklabels([])
        ax.set_title("# Classes: {}; Final VLB: {:.2f}".format(n_classes, G.best_elbo))

    plt.tight_layout()
    plt.savefig("img/plot.png", dpi=300)
    plt.close("all") 
開發者ID:ddbourgin,項目名稱:numpy-ml,代碼行數:35,代碼來源:gmm_plots.py


注:本文中的sklearn.datasets.samples_generator.make_blobs方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。