當前位置: 首頁>>代碼示例>>Python>>正文


Python datasets.make_regression方法代碼示例

本文整理匯總了Python中sklearn.datasets.make_regression方法的典型用法代碼示例。如果您正苦於以下問題:Python datasets.make_regression方法的具體用法?Python datasets.make_regression怎麽用?Python datasets.make_regression使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在sklearn.datasets的用法示例。


在下文中一共展示了datasets.make_regression方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_early_stopping_regression

# 需要導入模塊: from sklearn import datasets [as 別名]
# 或者: from sklearn.datasets import make_regression [as 別名]
def test_early_stopping_regression(scoring, validation_split,
                                   n_iter_no_change, tol):

    max_iter = 500

    X, y = make_regression(random_state=0)

    gb = GradientBoostingRegressor(verbose=1,  # just for coverage
                                   scoring=scoring,
                                   tol=tol,
                                   validation_split=validation_split,
                                   max_iter=max_iter,
                                   n_iter_no_change=n_iter_no_change,
                                   random_state=0)
    gb.fit(X, y)

    if n_iter_no_change is not None:
        assert n_iter_no_change <= gb.n_iter_ < max_iter
    else:
        assert gb.n_iter_ == max_iter 
開發者ID:ogrisel,項目名稱:pygbm,代碼行數:22,代碼來源:test_gradient_boosting.py

示例2: test_fixed_effect_contrast_nonzero_effect

# 需要導入模塊: from sklearn import datasets [as 別名]
# 或者: from sklearn.datasets import make_regression [as 別名]
def test_fixed_effect_contrast_nonzero_effect():
    X, y = make_regression(n_features=5, n_samples=20, random_state=0)
    y = y[:, None]
    labels, results = run_glm(y, X, 'ols')
    coef = LinearRegression(fit_intercept=False).fit(X, y).coef_
    for i in range(X.shape[1]):
        contrast = np.zeros(X.shape[1])
        contrast[i] = 1.
        fixed_effect = _compute_fixed_effect_contrast([labels],
                                                      [results],
                                                      [contrast],
                                                      )
        assert_almost_equal(fixed_effect.effect_size(), coef.ravel()[i])
        fixed_effect = _compute_fixed_effect_contrast(
            [labels] * 3, [results] * 3, [contrast] * 3)
        assert_almost_equal(fixed_effect.effect_size(), coef.ravel()[i]) 
開發者ID:nilearn,項目名稱:nistats,代碼行數:18,代碼來源:test_contrasts.py

示例3: make_regression_df

# 需要導入模塊: from sklearn import datasets [as 別名]
# 或者: from sklearn.datasets import make_regression [as 別名]
def make_regression_df(n_samples: int = 1024,
                       n_num_features: int = 20,
                       n_cat_features: int = 0,
                       feature_name: str = 'col_{}',
                       target_name: str = 'target',
                       random_state: int = 0,
                       id_column: str = None) -> Tuple[pd.DataFrame, pd.Series]:
    np.random.seed(random_state)
    X, y = make_regression(n_samples=n_samples, n_features=n_num_features,
                           random_state=random_state)

    X = pd.DataFrame(X, columns=[feature_name.format(i) for i in range(n_num_features)])
    y = pd.Series(y, name=target_name)

    if id_column is not None:
        X[id_column] = range(n_samples)

    for i in range(n_cat_features):
        X['cat_{}'.format(i)] = \
            pd.Series(np.random.choice(['A', 'B', None], size=n_samples)).astype(str).astype('category')

    return X, y 
開發者ID:nyanp,項目名稱:nyaggle,代碼行數:24,代碼來源:util.py

示例4: test_early_stopping_regression

# 需要導入模塊: from sklearn import datasets [as 別名]
# 或者: from sklearn.datasets import make_regression [as 別名]
def test_early_stopping_regression(scoring, validation_fraction,
                                   n_iter_no_change, tol):

    max_iter = 200

    X, y = make_regression(random_state=0)

    gb = HistGradientBoostingRegressor(
        verbose=1,  # just for coverage
        min_samples_leaf=5,  # easier to overfit fast
        scoring=scoring,
        tol=tol,
        validation_fraction=validation_fraction,
        max_iter=max_iter,
        n_iter_no_change=n_iter_no_change,
        random_state=0
    )
    gb.fit(X, y)

    if n_iter_no_change is not None:
        assert n_iter_no_change <= gb.n_iter_ < max_iter
    else:
        assert gb.n_iter_ == max_iter 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:25,代碼來源:test_gradient_boosting.py

示例5: test_shuffle

# 需要導入模塊: from sklearn import datasets [as 別名]
# 或者: from sklearn.datasets import make_regression [as 別名]
def test_shuffle():
    # Test that the shuffle parameter affects the training process (it should)
    X, y = make_regression(n_samples=50, n_features=5, n_targets=1,
                           random_state=0)

    # The coefficients will be identical if both do or do not shuffle
    for shuffle in [True, False]:
        mlp1 = MLPRegressor(hidden_layer_sizes=1, max_iter=1, batch_size=1,
                            random_state=0, shuffle=shuffle)
        mlp2 = MLPRegressor(hidden_layer_sizes=1, max_iter=1, batch_size=1,
                            random_state=0, shuffle=shuffle)
        mlp1.fit(X, y)
        mlp2.fit(X, y)

        assert np.array_equal(mlp1.coefs_[0], mlp2.coefs_[0])

    # The coefficients will be slightly different if shuffle=True
    mlp1 = MLPRegressor(hidden_layer_sizes=1, max_iter=1, batch_size=1,
                        random_state=0, shuffle=True)
    mlp2 = MLPRegressor(hidden_layer_sizes=1, max_iter=1, batch_size=1,
                        random_state=0, shuffle=False)
    mlp1.fit(X, y)
    mlp2.fit(X, y)

    assert not np.array_equal(mlp1.coefs_[0], mlp2.coefs_[0]) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:27,代碼來源:test_mlp.py

示例6: test_cross_val_score_with_score_func_regression

# 需要導入模塊: from sklearn import datasets [as 別名]
# 或者: from sklearn.datasets import make_regression [as 別名]
def test_cross_val_score_with_score_func_regression():
    X, y = make_regression(n_samples=30, n_features=20, n_informative=5,
                           random_state=0)
    reg = Ridge()

    # Default score of the Ridge regression estimator
    scores = cross_val_score(reg, X, y, cv=5)
    assert_array_almost_equal(scores, [0.94, 0.97, 0.97, 0.99, 0.92], 2)

    # R2 score (aka. determination coefficient) - should be the
    # same as the default estimator score
    r2_scores = cross_val_score(reg, X, y, scoring="r2", cv=5)
    assert_array_almost_equal(r2_scores, [0.94, 0.97, 0.97, 0.99, 0.92], 2)

    # Mean squared error; this is a loss function, so "scores" are negative
    neg_mse_scores = cross_val_score(reg, X, y, cv=5,
                                     scoring="neg_mean_squared_error")
    expected_neg_mse = np.array([-763.07, -553.16, -274.38, -273.26, -1681.99])
    assert_array_almost_equal(neg_mse_scores, expected_neg_mse, 2)

    # Explained variance
    scoring = make_scorer(explained_variance_score)
    ev_scores = cross_val_score(reg, X, y, cv=5, scoring=scoring)
    assert_array_almost_equal(ev_scores, [0.94, 0.97, 0.97, 0.99, 0.92], 2) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:26,代碼來源:test_validation.py

示例7: test_multi_target_regression

# 需要導入模塊: from sklearn import datasets [as 別名]
# 或者: from sklearn.datasets import make_regression [as 別名]
def test_multi_target_regression():
    X, y = datasets.make_regression(n_targets=3)
    X_train, y_train = X[:50], y[:50]
    X_test, y_test = X[50:], y[50:]

    references = np.zeros_like(y_test)
    for n in range(3):
        rgr = GradientBoostingRegressor(random_state=0)
        rgr.fit(X_train, y_train[:, n])
        references[:, n] = rgr.predict(X_test)

    rgr = MultiOutputRegressor(GradientBoostingRegressor(random_state=0))
    rgr.fit(X_train, y_train)
    y_pred = rgr.predict(X_test)

    assert_almost_equal(references, y_pred)


# 0.23. warning about tol not having its correct default value. 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:21,代碼來源:test_multioutput.py

示例8: test_multi_target_regression_partial_fit

# 需要導入模塊: from sklearn import datasets [as 別名]
# 或者: from sklearn.datasets import make_regression [as 別名]
def test_multi_target_regression_partial_fit():
    X, y = datasets.make_regression(n_targets=3)
    X_train, y_train = X[:50], y[:50]
    X_test, y_test = X[50:], y[50:]

    references = np.zeros_like(y_test)
    half_index = 25
    for n in range(3):
        sgr = SGDRegressor(random_state=0, max_iter=5)
        sgr.partial_fit(X_train[:half_index], y_train[:half_index, n])
        sgr.partial_fit(X_train[half_index:], y_train[half_index:, n])
        references[:, n] = sgr.predict(X_test)

    sgr = MultiOutputRegressor(SGDRegressor(random_state=0, max_iter=5))

    sgr.partial_fit(X_train[:half_index], y_train[:half_index])
    sgr.partial_fit(X_train[half_index:], y_train[half_index:])

    y_pred = sgr.predict(X_test)
    assert_almost_equal(references, y_pred)
    assert not hasattr(MultiOutputRegressor(Lasso), 'partial_fit') 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:23,代碼來源:test_multioutput.py

示例9: test_ridge_fit_intercept_sparse

# 需要導入模塊: from sklearn import datasets [as 別名]
# 或者: from sklearn.datasets import make_regression [as 別名]
def test_ridge_fit_intercept_sparse():
    X, y = make_regression(n_samples=1000, n_features=2, n_informative=2,
                           bias=10., random_state=42)

    X_csr = sp.csr_matrix(X)

    for solver in ['sag', 'sparse_cg']:
        dense = Ridge(alpha=1., tol=1.e-15, solver=solver, fit_intercept=True)
        sparse = Ridge(alpha=1., tol=1.e-15, solver=solver, fit_intercept=True)
        dense.fit(X, y)
        with pytest.warns(None) as record:
            sparse.fit(X_csr, y)
        assert len(record) == 0
        assert_almost_equal(dense.intercept_, sparse.intercept_)
        assert_array_almost_equal(dense.coef_, sparse.coef_)

    # test the solver switch and the corresponding warning
    for solver in ['saga', 'lsqr']:
        sparse = Ridge(alpha=1., tol=1.e-15, solver=solver, fit_intercept=True)
        assert_raises_regex(ValueError, "In Ridge,", sparse.fit, X_csr, y) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:22,代碼來源:test_ridge.py

示例10: test_make_regression

# 需要導入模塊: from sklearn import datasets [as 別名]
# 或者: from sklearn.datasets import make_regression [as 別名]
def test_make_regression():
    X, y, c = make_regression(n_samples=100, n_features=10, n_informative=3,
                              effective_rank=5, coef=True, bias=0.0,
                              noise=1.0, random_state=0)

    assert_equal(X.shape, (100, 10), "X shape mismatch")
    assert_equal(y.shape, (100,), "y shape mismatch")
    assert_equal(c.shape, (10,), "coef shape mismatch")
    assert_equal(sum(c != 0.0), 3, "Unexpected number of informative features")

    # Test that y ~= np.dot(X, c) + bias + N(0, 1.0).
    assert_almost_equal(np.std(y - np.dot(X, c)), 1.0, decimal=1)

    # Test with small number of features.
    X, y = make_regression(n_samples=100, n_features=1)  # n_informative=3
    assert_equal(X.shape, (100, 1)) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:18,代碼來源:test_samples_generator.py

示例11: test_prediction_gradient

# 需要導入模塊: from sklearn import datasets [as 別名]
# 或者: from sklearn.datasets import make_regression [as 別名]
def test_prediction_gradient():
    """Test computation of prediction gradients."""
    mlp = MLPRegressor(n_epochs=100, random_state=42, hidden_units=(5,))
    X, y = make_regression(
        n_samples=1000, n_features=10, n_informative=1, shuffle=False)
    mlp.fit(X, y)
    grad = mlp.prediction_gradient(X)
    grad_means = grad.mean(axis=0)
    assert grad.shape == X.shape
    # Check that only the informative feature has a large gradient.
    assert np.abs(grad_means[0]) > 0.5
    for m in grad_means[1:]:
        assert np.abs(m) < 0.1

    # Raise an exception for sparse inputs, which are not yet supported.
    X_sp = sp.csr_matrix(X)
    mlp.fit(X_sp, y)
    with pytest.raises(NotImplementedError):
        mlp.prediction_gradient(X_sp) 
開發者ID:civisanalytics,項目名稱:muffnn,代碼行數:21,代碼來源:test_mlp_regressor.py

示例12: test_smoke_multiout_regression_methods

# 需要導入模塊: from sklearn import datasets [as 別名]
# 或者: from sklearn.datasets import make_regression [as 別名]
def test_smoke_multiout_regression_methods(n_jobs):
    """Construct, fit, and predict on realistic problem.
    """
    X, y = make_regression(random_state=7, n_samples=100, n_features=10,
                           n_informative=4, n_targets=2)

    rng = np.random.RandomState(17)
    est_list = [('lr', LinearRegression()),
                ('rf', RandomForestRegressor(random_state=rng,
                                             n_estimators=10)),
                ('metalr', LinearRegression())]
    sm = StackedRegressor(est_list, n_jobs=n_jobs)
    sm.fit(X, y)
    sm.predict(X)
    sm.score(X, y)

    with pytest.raises(AttributeError):
        sm.predict_proba(X) 
開發者ID:civisanalytics,項目名稱:civisml-extensions,代碼行數:20,代碼來源:test_stacking.py

示例13: test_cv

# 需要導入模塊: from sklearn import datasets [as 別名]
# 或者: from sklearn.datasets import make_regression [as 別名]
def test_cv():
    """Simple CV check."""
    # XXX: don't use scikit-learn for tests.
    X, y = make_regression()
    cv = KFold(n_splits=5)

    glm_normal = GLM(distr='gaussian', alpha=0.01, reg_lambda=0.1)
    # check that it returns 5 scores
    scores = cross_val_score(glm_normal, X, y, cv=cv)
    assert(len(scores) == 5)

    param_grid = [{'alpha': np.linspace(0.01, 0.99, 2)},
                  {'reg_lambda': np.logspace(np.log(0.5), np.log(0.01),
                                             10, base=np.exp(1))}]
    glmcv = GridSearchCV(glm_normal, param_grid, cv=cv)
    glmcv.fit(X, y) 
開發者ID:glm-tools,項目名稱:pyglmnet,代碼行數:18,代碼來源:test_pyglmnet.py

示例14: setUpClass

# 需要導入模塊: from sklearn import datasets [as 別名]
# 或者: from sklearn.datasets import make_regression [as 別名]
def setUpClass(cls):
        cls.X, cls.y = datasets.make_regression(
            n_samples=100, n_features=5, n_informative=4, shuffle=False, random_state=0
        )

        cls.params = {
            "dense_layers": 2,
            "dense_1_size": 8,
            "dense_2_size": 4,
            "dropout": 0,
            "learning_rate": 0.01,
            "momentum": 0.9,
            "decay": 0.001,
            "ml_task": "regression"
        }

        cls.y = preprocessing.scale(cls.y) 
開發者ID:mljar,項目名稱:mljar-supervised,代碼行數:19,代碼來源:test_nn.py

示例15: test_kmeans

# 需要導入模塊: from sklearn import datasets [as 別名]
# 或者: from sklearn.datasets import make_regression [as 別名]
def test_kmeans(self):
        model = KMeans()
        X, y = make_regression(n_features=4, random_state=42)
        model.fit(X, y)
        initial_types = [('input', FloatTensorType((None, X.shape[1])))]
        with self.assertRaises(RuntimeError):
            convert_sklearn(model, initial_types=initial_types,
                            final_types=[('output4', None)])
        with self.assertRaises(RuntimeError):
            convert_sklearn(model, initial_types=initial_types,
                            final_types=[('dup1', None), ('dup1', None)],
                            target_opset=TARGET_OPSET)
        model_onnx = convert_sklearn(
            model, initial_types=initial_types,
            final_types=[('output4', None), ('output5', None)],
            target_opset=TARGET_OPSET)
        assert model_onnx is not None
        sess = InferenceSession(model_onnx.SerializeToString())
        assert sess.get_outputs()[0].name == 'output4'
        assert sess.get_outputs()[1].name == 'output5' 
開發者ID:onnx,項目名稱:sklearn-onnx,代碼行數:22,代碼來源:test_parsing_options.py


注:本文中的sklearn.datasets.make_regression方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。