本文整理匯總了Python中sklearn.datasets.make_regression方法的典型用法代碼示例。如果您正苦於以下問題:Python datasets.make_regression方法的具體用法?Python datasets.make_regression怎麽用?Python datasets.make_regression使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類sklearn.datasets
的用法示例。
在下文中一共展示了datasets.make_regression方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_early_stopping_regression
# 需要導入模塊: from sklearn import datasets [as 別名]
# 或者: from sklearn.datasets import make_regression [as 別名]
def test_early_stopping_regression(scoring, validation_split,
n_iter_no_change, tol):
max_iter = 500
X, y = make_regression(random_state=0)
gb = GradientBoostingRegressor(verbose=1, # just for coverage
scoring=scoring,
tol=tol,
validation_split=validation_split,
max_iter=max_iter,
n_iter_no_change=n_iter_no_change,
random_state=0)
gb.fit(X, y)
if n_iter_no_change is not None:
assert n_iter_no_change <= gb.n_iter_ < max_iter
else:
assert gb.n_iter_ == max_iter
示例2: test_fixed_effect_contrast_nonzero_effect
# 需要導入模塊: from sklearn import datasets [as 別名]
# 或者: from sklearn.datasets import make_regression [as 別名]
def test_fixed_effect_contrast_nonzero_effect():
X, y = make_regression(n_features=5, n_samples=20, random_state=0)
y = y[:, None]
labels, results = run_glm(y, X, 'ols')
coef = LinearRegression(fit_intercept=False).fit(X, y).coef_
for i in range(X.shape[1]):
contrast = np.zeros(X.shape[1])
contrast[i] = 1.
fixed_effect = _compute_fixed_effect_contrast([labels],
[results],
[contrast],
)
assert_almost_equal(fixed_effect.effect_size(), coef.ravel()[i])
fixed_effect = _compute_fixed_effect_contrast(
[labels] * 3, [results] * 3, [contrast] * 3)
assert_almost_equal(fixed_effect.effect_size(), coef.ravel()[i])
示例3: make_regression_df
# 需要導入模塊: from sklearn import datasets [as 別名]
# 或者: from sklearn.datasets import make_regression [as 別名]
def make_regression_df(n_samples: int = 1024,
n_num_features: int = 20,
n_cat_features: int = 0,
feature_name: str = 'col_{}',
target_name: str = 'target',
random_state: int = 0,
id_column: str = None) -> Tuple[pd.DataFrame, pd.Series]:
np.random.seed(random_state)
X, y = make_regression(n_samples=n_samples, n_features=n_num_features,
random_state=random_state)
X = pd.DataFrame(X, columns=[feature_name.format(i) for i in range(n_num_features)])
y = pd.Series(y, name=target_name)
if id_column is not None:
X[id_column] = range(n_samples)
for i in range(n_cat_features):
X['cat_{}'.format(i)] = \
pd.Series(np.random.choice(['A', 'B', None], size=n_samples)).astype(str).astype('category')
return X, y
示例4: test_early_stopping_regression
# 需要導入模塊: from sklearn import datasets [as 別名]
# 或者: from sklearn.datasets import make_regression [as 別名]
def test_early_stopping_regression(scoring, validation_fraction,
n_iter_no_change, tol):
max_iter = 200
X, y = make_regression(random_state=0)
gb = HistGradientBoostingRegressor(
verbose=1, # just for coverage
min_samples_leaf=5, # easier to overfit fast
scoring=scoring,
tol=tol,
validation_fraction=validation_fraction,
max_iter=max_iter,
n_iter_no_change=n_iter_no_change,
random_state=0
)
gb.fit(X, y)
if n_iter_no_change is not None:
assert n_iter_no_change <= gb.n_iter_ < max_iter
else:
assert gb.n_iter_ == max_iter
示例5: test_shuffle
# 需要導入模塊: from sklearn import datasets [as 別名]
# 或者: from sklearn.datasets import make_regression [as 別名]
def test_shuffle():
# Test that the shuffle parameter affects the training process (it should)
X, y = make_regression(n_samples=50, n_features=5, n_targets=1,
random_state=0)
# The coefficients will be identical if both do or do not shuffle
for shuffle in [True, False]:
mlp1 = MLPRegressor(hidden_layer_sizes=1, max_iter=1, batch_size=1,
random_state=0, shuffle=shuffle)
mlp2 = MLPRegressor(hidden_layer_sizes=1, max_iter=1, batch_size=1,
random_state=0, shuffle=shuffle)
mlp1.fit(X, y)
mlp2.fit(X, y)
assert np.array_equal(mlp1.coefs_[0], mlp2.coefs_[0])
# The coefficients will be slightly different if shuffle=True
mlp1 = MLPRegressor(hidden_layer_sizes=1, max_iter=1, batch_size=1,
random_state=0, shuffle=True)
mlp2 = MLPRegressor(hidden_layer_sizes=1, max_iter=1, batch_size=1,
random_state=0, shuffle=False)
mlp1.fit(X, y)
mlp2.fit(X, y)
assert not np.array_equal(mlp1.coefs_[0], mlp2.coefs_[0])
示例6: test_cross_val_score_with_score_func_regression
# 需要導入模塊: from sklearn import datasets [as 別名]
# 或者: from sklearn.datasets import make_regression [as 別名]
def test_cross_val_score_with_score_func_regression():
X, y = make_regression(n_samples=30, n_features=20, n_informative=5,
random_state=0)
reg = Ridge()
# Default score of the Ridge regression estimator
scores = cross_val_score(reg, X, y, cv=5)
assert_array_almost_equal(scores, [0.94, 0.97, 0.97, 0.99, 0.92], 2)
# R2 score (aka. determination coefficient) - should be the
# same as the default estimator score
r2_scores = cross_val_score(reg, X, y, scoring="r2", cv=5)
assert_array_almost_equal(r2_scores, [0.94, 0.97, 0.97, 0.99, 0.92], 2)
# Mean squared error; this is a loss function, so "scores" are negative
neg_mse_scores = cross_val_score(reg, X, y, cv=5,
scoring="neg_mean_squared_error")
expected_neg_mse = np.array([-763.07, -553.16, -274.38, -273.26, -1681.99])
assert_array_almost_equal(neg_mse_scores, expected_neg_mse, 2)
# Explained variance
scoring = make_scorer(explained_variance_score)
ev_scores = cross_val_score(reg, X, y, cv=5, scoring=scoring)
assert_array_almost_equal(ev_scores, [0.94, 0.97, 0.97, 0.99, 0.92], 2)
示例7: test_multi_target_regression
# 需要導入模塊: from sklearn import datasets [as 別名]
# 或者: from sklearn.datasets import make_regression [as 別名]
def test_multi_target_regression():
X, y = datasets.make_regression(n_targets=3)
X_train, y_train = X[:50], y[:50]
X_test, y_test = X[50:], y[50:]
references = np.zeros_like(y_test)
for n in range(3):
rgr = GradientBoostingRegressor(random_state=0)
rgr.fit(X_train, y_train[:, n])
references[:, n] = rgr.predict(X_test)
rgr = MultiOutputRegressor(GradientBoostingRegressor(random_state=0))
rgr.fit(X_train, y_train)
y_pred = rgr.predict(X_test)
assert_almost_equal(references, y_pred)
# 0.23. warning about tol not having its correct default value.
示例8: test_multi_target_regression_partial_fit
# 需要導入模塊: from sklearn import datasets [as 別名]
# 或者: from sklearn.datasets import make_regression [as 別名]
def test_multi_target_regression_partial_fit():
X, y = datasets.make_regression(n_targets=3)
X_train, y_train = X[:50], y[:50]
X_test, y_test = X[50:], y[50:]
references = np.zeros_like(y_test)
half_index = 25
for n in range(3):
sgr = SGDRegressor(random_state=0, max_iter=5)
sgr.partial_fit(X_train[:half_index], y_train[:half_index, n])
sgr.partial_fit(X_train[half_index:], y_train[half_index:, n])
references[:, n] = sgr.predict(X_test)
sgr = MultiOutputRegressor(SGDRegressor(random_state=0, max_iter=5))
sgr.partial_fit(X_train[:half_index], y_train[:half_index])
sgr.partial_fit(X_train[half_index:], y_train[half_index:])
y_pred = sgr.predict(X_test)
assert_almost_equal(references, y_pred)
assert not hasattr(MultiOutputRegressor(Lasso), 'partial_fit')
示例9: test_ridge_fit_intercept_sparse
# 需要導入模塊: from sklearn import datasets [as 別名]
# 或者: from sklearn.datasets import make_regression [as 別名]
def test_ridge_fit_intercept_sparse():
X, y = make_regression(n_samples=1000, n_features=2, n_informative=2,
bias=10., random_state=42)
X_csr = sp.csr_matrix(X)
for solver in ['sag', 'sparse_cg']:
dense = Ridge(alpha=1., tol=1.e-15, solver=solver, fit_intercept=True)
sparse = Ridge(alpha=1., tol=1.e-15, solver=solver, fit_intercept=True)
dense.fit(X, y)
with pytest.warns(None) as record:
sparse.fit(X_csr, y)
assert len(record) == 0
assert_almost_equal(dense.intercept_, sparse.intercept_)
assert_array_almost_equal(dense.coef_, sparse.coef_)
# test the solver switch and the corresponding warning
for solver in ['saga', 'lsqr']:
sparse = Ridge(alpha=1., tol=1.e-15, solver=solver, fit_intercept=True)
assert_raises_regex(ValueError, "In Ridge,", sparse.fit, X_csr, y)
示例10: test_make_regression
# 需要導入模塊: from sklearn import datasets [as 別名]
# 或者: from sklearn.datasets import make_regression [as 別名]
def test_make_regression():
X, y, c = make_regression(n_samples=100, n_features=10, n_informative=3,
effective_rank=5, coef=True, bias=0.0,
noise=1.0, random_state=0)
assert_equal(X.shape, (100, 10), "X shape mismatch")
assert_equal(y.shape, (100,), "y shape mismatch")
assert_equal(c.shape, (10,), "coef shape mismatch")
assert_equal(sum(c != 0.0), 3, "Unexpected number of informative features")
# Test that y ~= np.dot(X, c) + bias + N(0, 1.0).
assert_almost_equal(np.std(y - np.dot(X, c)), 1.0, decimal=1)
# Test with small number of features.
X, y = make_regression(n_samples=100, n_features=1) # n_informative=3
assert_equal(X.shape, (100, 1))
示例11: test_prediction_gradient
# 需要導入模塊: from sklearn import datasets [as 別名]
# 或者: from sklearn.datasets import make_regression [as 別名]
def test_prediction_gradient():
"""Test computation of prediction gradients."""
mlp = MLPRegressor(n_epochs=100, random_state=42, hidden_units=(5,))
X, y = make_regression(
n_samples=1000, n_features=10, n_informative=1, shuffle=False)
mlp.fit(X, y)
grad = mlp.prediction_gradient(X)
grad_means = grad.mean(axis=0)
assert grad.shape == X.shape
# Check that only the informative feature has a large gradient.
assert np.abs(grad_means[0]) > 0.5
for m in grad_means[1:]:
assert np.abs(m) < 0.1
# Raise an exception for sparse inputs, which are not yet supported.
X_sp = sp.csr_matrix(X)
mlp.fit(X_sp, y)
with pytest.raises(NotImplementedError):
mlp.prediction_gradient(X_sp)
示例12: test_smoke_multiout_regression_methods
# 需要導入模塊: from sklearn import datasets [as 別名]
# 或者: from sklearn.datasets import make_regression [as 別名]
def test_smoke_multiout_regression_methods(n_jobs):
"""Construct, fit, and predict on realistic problem.
"""
X, y = make_regression(random_state=7, n_samples=100, n_features=10,
n_informative=4, n_targets=2)
rng = np.random.RandomState(17)
est_list = [('lr', LinearRegression()),
('rf', RandomForestRegressor(random_state=rng,
n_estimators=10)),
('metalr', LinearRegression())]
sm = StackedRegressor(est_list, n_jobs=n_jobs)
sm.fit(X, y)
sm.predict(X)
sm.score(X, y)
with pytest.raises(AttributeError):
sm.predict_proba(X)
示例13: test_cv
# 需要導入模塊: from sklearn import datasets [as 別名]
# 或者: from sklearn.datasets import make_regression [as 別名]
def test_cv():
"""Simple CV check."""
# XXX: don't use scikit-learn for tests.
X, y = make_regression()
cv = KFold(n_splits=5)
glm_normal = GLM(distr='gaussian', alpha=0.01, reg_lambda=0.1)
# check that it returns 5 scores
scores = cross_val_score(glm_normal, X, y, cv=cv)
assert(len(scores) == 5)
param_grid = [{'alpha': np.linspace(0.01, 0.99, 2)},
{'reg_lambda': np.logspace(np.log(0.5), np.log(0.01),
10, base=np.exp(1))}]
glmcv = GridSearchCV(glm_normal, param_grid, cv=cv)
glmcv.fit(X, y)
示例14: setUpClass
# 需要導入模塊: from sklearn import datasets [as 別名]
# 或者: from sklearn.datasets import make_regression [as 別名]
def setUpClass(cls):
cls.X, cls.y = datasets.make_regression(
n_samples=100, n_features=5, n_informative=4, shuffle=False, random_state=0
)
cls.params = {
"dense_layers": 2,
"dense_1_size": 8,
"dense_2_size": 4,
"dropout": 0,
"learning_rate": 0.01,
"momentum": 0.9,
"decay": 0.001,
"ml_task": "regression"
}
cls.y = preprocessing.scale(cls.y)
示例15: test_kmeans
# 需要導入模塊: from sklearn import datasets [as 別名]
# 或者: from sklearn.datasets import make_regression [as 別名]
def test_kmeans(self):
model = KMeans()
X, y = make_regression(n_features=4, random_state=42)
model.fit(X, y)
initial_types = [('input', FloatTensorType((None, X.shape[1])))]
with self.assertRaises(RuntimeError):
convert_sklearn(model, initial_types=initial_types,
final_types=[('output4', None)])
with self.assertRaises(RuntimeError):
convert_sklearn(model, initial_types=initial_types,
final_types=[('dup1', None), ('dup1', None)],
target_opset=TARGET_OPSET)
model_onnx = convert_sklearn(
model, initial_types=initial_types,
final_types=[('output4', None), ('output5', None)],
target_opset=TARGET_OPSET)
assert model_onnx is not None
sess = InferenceSession(model_onnx.SerializeToString())
assert sess.get_outputs()[0].name == 'output4'
assert sess.get_outputs()[1].name == 'output5'