當前位置: 首頁>>代碼示例>>Python>>正文


Python datasets.load_diabetes方法代碼示例

本文整理匯總了Python中sklearn.datasets.load_diabetes方法的典型用法代碼示例。如果您正苦於以下問題:Python datasets.load_diabetes方法的具體用法?Python datasets.load_diabetes怎麽用?Python datasets.load_diabetes使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在sklearn.datasets的用法示例。


在下文中一共展示了datasets.load_diabetes方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_lasso_cv_with_some_model_selection

# 需要導入模塊: from sklearn import datasets [as 別名]
# 或者: from sklearn.datasets import load_diabetes [as 別名]
def test_lasso_cv_with_some_model_selection():
    from sklearn.pipeline import make_pipeline
    from sklearn.preprocessing import StandardScaler
    from sklearn.model_selection import StratifiedKFold
    from sklearn import datasets
    from sklearn.linear_model import LassoCV

    diabetes = datasets.load_diabetes()
    X = diabetes.data
    y = diabetes.target

    pipe = make_pipeline(
        StandardScaler(),
        LassoCV(cv=StratifiedKFold(n_splits=5))
    )
    pipe.fit(X, y) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:18,代碼來源:test_coordinate_descent.py

示例2: test_lasso_path

# 需要導入模塊: from sklearn import datasets [as 別名]
# 或者: from sklearn.datasets import load_diabetes [as 別名]
def test_lasso_path(self):
        diabetes = datasets.load_diabetes()
        df = pdml.ModelFrame(diabetes)

        result = df.linear_model.lasso_path()
        expected = lm.lasso_path(diabetes.data, diabetes.target)

        self.assertEqual(len(result), 3)
        tm.assert_numpy_array_equal(result[0], expected[0])
        self.assertIsInstance(result[1], pdml.ModelFrame)
        tm.assert_index_equal(result[1].index, df.data.columns)
        self.assert_numpy_array_almost_equal(result[1].values, expected[1])
        self.assert_numpy_array_almost_equal(result[2], expected[2])

        result = df.linear_model.lasso_path(return_models=True)
        expected = lm.lasso_path(diabetes.data, diabetes.target, return_models=True)
        self.assertEqual(len(result), len(expected))
        self.assertIsInstance(result, tuple)
        tm.assert_numpy_array_equal(result[0], result[0])
        tm.assert_numpy_array_equal(result[1], result[1])
        tm.assert_numpy_array_equal(result[2], result[2]) 
開發者ID:pandas-ml,項目名稱:pandas-ml,代碼行數:23,代碼來源:test_linear_model.py

示例3: test_LassoCV

# 需要導入模塊: from sklearn import datasets [as 別名]
# 或者: from sklearn.datasets import load_diabetes [as 別名]
def test_LassoCV(self, criterion):
        diabetes = datasets.load_diabetes()
        X = diabetes.data
        y = diabetes.target

        X = pp.normalize(X)

        df = pdml.ModelFrame(diabetes)
        df.data = df.data.pp.normalize()

        mod1 = lm.LassoLarsIC(criterion=criterion)
        mod1.fit(X, y)

        mod2 = df.lm.LassoLarsIC(criterion=criterion)
        df.fit(mod2)
        self.assertAlmostEqual(mod1.alpha_, mod2.alpha_)

        expected = mod1.predict(X)
        predicted = df.predict(mod2)
        self.assertIsInstance(predicted, pdml.ModelSeries)
        self.assert_numpy_array_almost_equal(predicted.values, expected) 
開發者ID:pandas-ml,項目名稱:pandas-ml,代碼行數:23,代碼來源:test_linear_model.py

示例4: test_MixedLM

# 需要導入模塊: from sklearn import datasets [as 別名]
# 或者: from sklearn.datasets import load_diabetes [as 別名]
def test_MixedLM(self):
        import statsmodels.regression.mixed_linear_model as mlm
        diabetes = datasets.load_diabetes()
        models = ['MixedLM']
        data = diabetes.data[:100, :]
        target = diabetes.target[:100]
        groups = np.array([0] * 50 + [1] * 50)
        for model in models:
            klass = getattr(sm, model)

            estimator = base.StatsModelsRegressor(klass, groups=groups)
            fitted = estimator.fit(data, target)
            # result = estimator.predict(diabetes.data)
            # NotImplementedError
            self.assertIsInstance(fitted, mlm.MixedLMResultsWrapper)

            # expected = klass(target, data, groups=groups).fit().predict(diabetes.data)
            # self.assert_numpy_array_almost_equal(result, expected) 
開發者ID:pandas-ml,項目名稱:pandas-ml,代碼行數:20,代碼來源:test_base.py

示例5: test_pipeline

# 需要導入模塊: from sklearn import datasets [as 別名]
# 或者: from sklearn.datasets import load_diabetes [as 別名]
def test_pipeline(self):
        from sklearn.feature_selection import SelectKBest
        from sklearn.feature_selection import f_regression
        from sklearn.pipeline import Pipeline

        diabetes = datasets.load_diabetes()
        models = ['OLS', 'GLS', 'WLS', 'GLSAR', 'QuantReg', 'GLM', 'RLM']

        for model in models:
            klass = getattr(sm, model)

            selector = SelectKBest(f_regression, k=5)
            estimator = Pipeline([('selector', selector),
                                  ('reg', base.StatsModelsRegressor(klass))])

            estimator.fit(diabetes.data, diabetes.target)
            result = estimator.predict(diabetes.data)

            data = SelectKBest(f_regression, k=5).fit_transform(diabetes.data, diabetes.target)
            expected = klass(diabetes.target, data).fit().predict(data)
            self.assert_numpy_array_almost_equal(result, expected) 
開發者ID:pandas-ml,項目名稱:pandas-ml,代碼行數:23,代碼來源:test_base.py

示例6: _timeseries_generated_data

# 需要導入模塊: from sklearn import datasets [as 別名]
# 或者: from sklearn.datasets import load_diabetes [as 別名]
def _timeseries_generated_data(self):
        # Load diabetes data and convert to data frame
        x, y = datasets.load_diabetes(return_X_y=True)
        nrows, ncols = x.shape
        column_names = [str(i) for i in range(ncols)]
        X = pd.DataFrame(x, columns=column_names)

        # Add an arbitrary time axis
        time_column_name = "Date" + str(uuid.uuid4())
        dates = pd.date_range('1980-01-01', periods=nrows, freq='MS')
        X[time_column_name] = dates
        index_keys = [time_column_name]
        X.set_index(index_keys, inplace=True)

        # Split into train and test sets
        test_frac = 0.2
        cutoff_index = int(np.floor((1.0 - test_frac) * nrows))

        X_train = X.iloc[:cutoff_index]
        y_train = y[:cutoff_index]
        X_test = X.iloc[cutoff_index:]
        y_test = y[cutoff_index:]

        return X_train, X_test, y_train, y_test, time_column_name 
開發者ID:interpretml,項目名稱:interpret-community,代碼行數:26,代碼來源:test_mimic_explainer.py

示例7: main

# 需要導入模塊: from sklearn import datasets [as 別名]
# 或者: from sklearn.datasets import load_diabetes [as 別名]
def main():
  diabetes = datasets.load_diabetes()
  diabetes_X = diabetes.data[:, np.newaxis, 2]

  diabetes_X_train = diabetes_X[:-20]
  diabetes_X_test = diabetes_X[-20:]

  diabetes_y_train = diabetes.target[:-20]
  diabetes_y_test = diabetes.target[-20:]

  regr = linear_model.LinearRegression()
  regr.fit(diabetes_X_train, diabetes_y_train)

  print('Coefficients: \n', regr.coef_)
  print("Mean squared error: %.2f" %
        np.mean((regr.predict(diabetes_X_test) - diabetes_y_test)**2))
  print('Variance score: %.2f' % regr.score(diabetes_X_test, diabetes_y_test)) 
開發者ID:XiaoMi,項目名稱:cloud-ml-sdk,代碼行數:19,代碼來源:task.py

示例8: test_svr

# 需要導入模塊: from sklearn import datasets [as 別名]
# 或者: from sklearn.datasets import load_diabetes [as 別名]
def test_svr():
    # Test Support Vector Regression

    diabetes = datasets.load_diabetes()
    for clf in (svm.NuSVR(kernel='linear', nu=.4, C=1.0),
                svm.NuSVR(kernel='linear', nu=.4, C=10.),
                svm.SVR(kernel='linear', C=10.),
                svm.LinearSVR(C=10.),
                svm.LinearSVR(C=10.),
                ):
        clf.fit(diabetes.data, diabetes.target)
        assert_greater(clf.score(diabetes.data, diabetes.target), 0.02)

    # non-regression test; previously, BaseLibSVM would check that
    # len(np.unique(y)) < 2, which must only be done for SVC
    svm.SVR().fit(diabetes.data, np.ones(len(diabetes.data)))
    svm.LinearSVR().fit(diabetes.data, np.ones(len(diabetes.data))) 
開發者ID:alvarobartt,項目名稱:twitter-stock-recommendation,代碼行數:19,代碼來源:test_svm.py

示例9: test_bayesian_on_diabetes

# 需要導入模塊: from sklearn import datasets [as 別名]
# 或者: from sklearn.datasets import load_diabetes [as 別名]
def test_bayesian_on_diabetes():
    # Test BayesianRidge on diabetes
    raise SkipTest("XFailed Test")
    diabetes = datasets.load_diabetes()
    X, y = diabetes.data, diabetes.target

    clf = BayesianRidge(compute_score=True)

    # Test with more samples than features
    clf.fit(X, y)
    # Test that scores are increasing at each iteration
    assert_array_equal(np.diff(clf.scores_) > 0, True)

    # Test with more features than samples
    X = X[:5, :]
    y = y[:5]
    clf.fit(X, y)
    # Test that scores are increasing at each iteration
    assert_array_equal(np.diff(clf.scores_) > 0, True) 
開發者ID:alvarobartt,項目名稱:twitter-stock-recommendation,代碼行數:21,代碼來源:test_bayes.py

示例10: test_xgb_regressor

# 需要導入模塊: from sklearn import datasets [as 別名]
# 或者: from sklearn.datasets import load_diabetes [as 別名]
def test_xgb_regressor(self):
        iris = load_diabetes()
        x = iris.data
        y = iris.target
        x_train, x_test, y_train, _ = train_test_split(x, y, test_size=0.5,
                                                       random_state=42)
        xgb = XGBRegressor()
        xgb.fit(x_train, y_train)
        conv_model = convert_xgboost(
            xgb, initial_types=[('input', FloatTensorType(shape=['None', 'None']))])
        self.assertTrue(conv_model is not None)
        dump_data_and_model(
            x_test.astype("float32"),
            xgb,
            conv_model,
            basename="SklearnXGBRegressor-Dec3",
            allow_failure="StrictVersion("
            "onnx.__version__)"
            "< StrictVersion('1.3.0')",
        ) 
開發者ID:onnx,項目名稱:onnxmltools,代碼行數:22,代碼來源:test_xgboost_converters.py

示例11: test_h2o_regressor

# 需要導入模塊: from sklearn import datasets [as 別名]
# 或者: from sklearn.datasets import load_diabetes [as 別名]
def test_h2o_regressor(self):
        diabetes = load_diabetes()
        train, test = _train_test_split_as_frames(diabetes.data, diabetes.target)
        dists = ["auto", "gaussian", "huber", "laplace", "quantile"]
        for d in dists:
            gbm = H2OGradientBoostingEstimator(ntrees=7, max_depth=5, distribution=d)
            mojo_path = _make_mojo(gbm, train)
            onnx_model = _convert_mojo(mojo_path)
            self.assertIsNot(onnx_model, None)
            dump_data_and_model(
                test,
                H2OMojoWrapper(mojo_path),
                onnx_model,
                basename="H2OReg-Dec4",
                allow_failure="StrictVersion("
                              "onnx.__version__)"
                              "< StrictVersion('1.3.0')",
            ) 
開發者ID:onnx,項目名稱:onnxmltools,代碼行數:20,代碼來源:test_h2o_converters.py

示例12: get_sample_dataset

# 需要導入模塊: from sklearn import datasets [as 別名]
# 或者: from sklearn.datasets import load_diabetes [as 別名]
def get_sample_dataset(dataset_properties):
    """Returns sample dataset

    Args:
        dataset_properties (dict): Dictionary corresponding to the properties of the dataset
            used to verify the estimator and metric generators.

    Returns:
        X (array-like): Features array

        y (array-like): Labels array

        splits (iterator): This is an iterator that returns train test splits for
            cross-validation purposes on ``X`` and ``y``.
    """
    kwargs = dataset_properties.copy()
    data_type = kwargs.pop('type')
    if data_type == 'multiclass':
        try:
            X, y = datasets.make_classification(random_state=8, **kwargs)
            splits = model_selection.StratifiedKFold(n_splits=2, random_state=8).split(X, y)
        except Exception as e:
            raise exceptions.UserError(repr(e))
    elif data_type == 'iris':
        X, y = datasets.load_iris(return_X_y=True)
        splits = model_selection.StratifiedKFold(n_splits=2, random_state=8).split(X, y)
    elif data_type == 'mnist':
        X, y = datasets.load_digits(return_X_y=True)
        splits = model_selection.StratifiedKFold(n_splits=2, random_state=8).split(X, y)
    elif data_type == 'breast_cancer':
        X, y = datasets.load_breast_cancer(return_X_y=True)
        splits = model_selection.StratifiedKFold(n_splits=2, random_state=8).split(X, y)
    elif data_type == 'boston':
        X, y = datasets.load_boston(return_X_y=True)
        splits = model_selection.KFold(n_splits=2, random_state=8).split(X)
    elif data_type == 'diabetes':
        X, y = datasets.load_diabetes(return_X_y=True)
        splits = model_selection.KFold(n_splits=2, random_state=8).split(X)
    else:
        raise exceptions.UserError('Unknown dataset type {}'.format(dataset_properties['type']))
    return X, y, splits 
開發者ID:reiinakano,項目名稱:xcessiv,代碼行數:43,代碼來源:functions.py

示例13: test_regression_scorers

# 需要導入模塊: from sklearn import datasets [as 別名]
# 或者: from sklearn.datasets import load_diabetes [as 別名]
def test_regression_scorers():
    # Test regression scorers.
    diabetes = load_diabetes()
    X, y = diabetes.data, diabetes.target
    X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
    clf = Ridge()
    clf.fit(X_train, y_train)
    score1 = get_scorer('r2')(clf, X_test, y_test)
    score2 = r2_score(y_test, clf.predict(X_test))
    assert_almost_equal(score1, score2) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:12,代碼來源:test_score_objects.py

示例14: test_svr

# 需要導入模塊: from sklearn import datasets [as 別名]
# 或者: from sklearn.datasets import load_diabetes [as 別名]
def test_svr():
    # Test Support Vector Regression

    diabetes = datasets.load_diabetes()
    for clf in (svm.NuSVR(kernel='linear', nu=.4, C=1.0),
                svm.NuSVR(kernel='linear', nu=.4, C=10.),
                svm.SVR(kernel='linear', C=10.),
                svm.LinearSVR(C=10.),
                svm.LinearSVR(C=10.),
                ):
        clf.fit(diabetes.data, diabetes.target)
        assert_greater(clf.score(diabetes.data, diabetes.target), 0.02)

    # non-regression test; previously, BaseLibSVM would check that
    # len(np.unique(y)) < 2, which must only be done for SVC
    svm.SVR(gamma='scale').fit(diabetes.data, np.ones(len(diabetes.data)))
    svm.LinearSVR().fit(diabetes.data, np.ones(len(diabetes.data))) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:19,代碼來源:test_svm.py

示例15: test_linearsvr

# 需要導入模塊: from sklearn import datasets [as 別名]
# 或者: from sklearn.datasets import load_diabetes [as 別名]
def test_linearsvr():
    # check that SVR(kernel='linear') and LinearSVC() give
    # comparable results
    diabetes = datasets.load_diabetes()
    lsvr = svm.LinearSVR(C=1e3).fit(diabetes.data, diabetes.target)
    score1 = lsvr.score(diabetes.data, diabetes.target)

    svr = svm.SVR(kernel='linear', C=1e3).fit(diabetes.data, diabetes.target)
    score2 = svr.score(diabetes.data, diabetes.target)

    assert_allclose(np.linalg.norm(lsvr.coef_),
                    np.linalg.norm(svr.coef_), 1, 0.0001)
    assert_almost_equal(score1, score2, 2) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:15,代碼來源:test_svm.py


注:本文中的sklearn.datasets.load_diabetes方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。