當前位置: 首頁>>代碼示例>>Python>>正文


Python datasets.load_breast_cancer方法代碼示例

本文整理匯總了Python中sklearn.datasets.load_breast_cancer方法的典型用法代碼示例。如果您正苦於以下問題:Python datasets.load_breast_cancer方法的具體用法?Python datasets.load_breast_cancer怎麽用?Python datasets.load_breast_cancer使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在sklearn.datasets的用法示例。


在下文中一共展示了datasets.load_breast_cancer方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: setUp

# 需要導入模塊: from sklearn import datasets [as 別名]
# 或者: from sklearn.datasets import load_breast_cancer [as 別名]
def setUp(self) -> None:
        self.random_state = 0
        d: dict = load_breast_cancer()
        X: DataFrame = DataFrame(d['data'], columns=d['feature_names'])
        self.col_ordinal = X.columns.to_list()
        np.random.seed(self.random_state)
        s = np.array(['a', 'b', 'c'])
        X['cat alpha'] = s[np.random.randint(0, 3, len(X))]
        X['cat num'] = np.random.randint(0, 3, len(X))
        self.col_categorical = ['cat alpha', 'cat num']
        s = np.array(['a', 'b'])
        X['bin alpha'] = s[np.random.randint(0, 2, len(X))]
        X['bin num'] = np.random.randint(0, 2, len(X))
        self.col_binary = ['bin alpha', 'bin num']
        self.X = X
        self.y: ndarray = d['target']
        self.X_train, self.X_test, self.y_train, self.y_test = \
            train_test_split(self.X, self.y, test_size=0.4, random_state=self.random_state) 
開發者ID:IBM,項目名稱:AIX360,代碼行數:20,代碼來源:test_Feature_Binarizer_From_Trees.py

示例2: main

# 需要導入模塊: from sklearn import datasets [as 別名]
# 或者: from sklearn.datasets import load_breast_cancer [as 別名]
def main():
    dataset = datasets.load_breast_cancer()

    features = dataset.data
    labels = dataset.target

    num_features = features.shape[1]

    features = StandardScaler().fit_transform(features)

    train_features, test_features, train_labels, test_labels = train_test_split(
        features, labels, test_size=0.3, stratify=labels
    )

    model = NearestNeighbor(train_features, train_labels, num_features)

    model.predict(test_features, test_labels, result_path="./results/nearest_neighbor/") 
開發者ID:AFAgarap,項目名稱:wisconsin-breast-cancer,代碼行數:19,代碼來源:main_nearest_neighbor.py

示例3: setUp

# 需要導入模塊: from sklearn import datasets [as 別名]
# 或者: from sklearn.datasets import load_breast_cancer [as 別名]
def setUp(self):
        self.roc_floor = 0.9
        self.accuracy_floor = 0.9

        random_state = 42
        X, y = load_breast_cancer(return_X_y=True)

        self.X_train, self.X_test, self.y_train, self.y_test = \
            train_test_split(X, y, test_size=0.4, random_state=random_state)

        classifiers = [DecisionTreeClassifier(random_state=random_state),
                       LogisticRegression(random_state=random_state),
                       KNeighborsClassifier(),
                       RandomForestClassifier(random_state=random_state),
                       GradientBoostingClassifier(random_state=random_state)]

        self.clf = DES_LA(classifiers, local_region_size=30)
        self.clf.fit(self.X_train, self.y_train) 
開發者ID:yzhao062,項目名稱:combo,代碼行數:20,代碼來源:test_classifier_des.py

示例4: setUp

# 需要導入模塊: from sklearn import datasets [as 別名]
# 或者: from sklearn.datasets import load_breast_cancer [as 別名]
def setUp(self):
        self.X, self.y = load_breast_cancer(return_X_y=True)

        self.n_clusters = 5
        self.n_estimators = 3

        # Initialize a set of estimators
        estimators = [KMeans(n_clusters=self.n_clusters),
                      MiniBatchKMeans(n_clusters=self.n_clusters),
                      AgglomerativeClustering(n_clusters=self.n_clusters)]

        # Clusterer Ensemble without initializing a new Class
        self.original_labels = np.zeros([self.X.shape[0], self.n_estimators])

        for i, estimator in enumerate(estimators):
            estimator.fit(self.X)
            self.original_labels[:, i] = estimator.labels_ 
開發者ID:yzhao062,項目名稱:combo,代碼行數:19,代碼來源:test_cluster_comb.py

示例5: setUp

# 需要導入模塊: from sklearn import datasets [as 別名]
# 或者: from sklearn.datasets import load_breast_cancer [as 別名]
def setUp(self):
        self.roc_floor = 0.9
        self.accuracy_floor = 0.9

        random_state = 42
        X, y = load_breast_cancer(return_X_y=True)

        self.X_train, self.X_test, self.y_train, self.y_test = \
            train_test_split(X, y, test_size=0.4, random_state=random_state)

        classifiers = [DecisionTreeClassifier(random_state=random_state),
                       LogisticRegression(random_state=random_state),
                       KNeighborsClassifier(),
                       RandomForestClassifier(random_state=random_state),
                       GradientBoostingClassifier(random_state=random_state)]

        self.clf = Stacking(classifiers, n_folds=4)
        self.clf.fit(self.X_train, self.y_train) 
開發者ID:yzhao062,項目名稱:combo,代碼行數:20,代碼來源:test_classifier_stacking.py

示例6: setUp

# 需要導入模塊: from sklearn import datasets [as 別名]
# 或者: from sklearn.datasets import load_breast_cancer [as 別名]
def setUp(self):
        self.roc_floor = 0.9
        self.accuracy_floor = 0.9

        random_state = 42
        X, y = load_breast_cancer(return_X_y=True)

        self.X_train, self.X_test, self.y_train, self.y_test = \
            train_test_split(X, y, test_size=0.4, random_state=random_state)

        classifiers = [DecisionTreeClassifier(random_state=random_state),
                       LogisticRegression(random_state=random_state),
                       KNeighborsClassifier(),
                       RandomForestClassifier(random_state=random_state),
                       GradientBoostingClassifier(random_state=random_state)]

        self.clf = SimpleClassifierAggregator(classifiers, method='average') 
開發者ID:yzhao062,項目名稱:combo,代碼行數:19,代碼來源:test_classifier_comb.py

示例7: test_fit_2

# 需要導入模塊: from sklearn import datasets [as 別名]
# 或者: from sklearn.datasets import load_breast_cancer [as 別名]
def test_fit_2(self):
        """Tests GridSearchCV fit() with different data."""
        x_np, y_np = datasets.load_breast_cancer(return_X_y=True)
        x = ds.array(x_np, block_size=(100, 10))
        x = StandardScaler().fit_transform(x)
        y = ds.array(y_np.reshape(-1, 1), block_size=(100, 1))
        parameters = {'c': [0.1], 'gamma': [0.1]}
        csvm = CascadeSVM()
        searcher = GridSearchCV(csvm, parameters, cv=5)
        searcher.fit(x, y)

        self.assertTrue(hasattr(searcher, 'best_estimator_'))
        self.assertTrue(hasattr(searcher, 'best_score_'))
        self.assertTrue(hasattr(searcher, 'best_params_'))
        self.assertTrue(hasattr(searcher, 'best_index_'))
        self.assertTrue(hasattr(searcher, 'scorer_'))
        self.assertEqual(searcher.n_splits_, 5) 
開發者ID:bsc-wdc,項目名稱:dislib,代碼行數:19,代碼來源:test_gridsearch.py

示例8: test_save_load_classifier

# 需要導入模塊: from sklearn import datasets [as 別名]
# 或者: from sklearn.datasets import load_breast_cancer [as 別名]
def test_save_load_classifier(self):
        X, y = datasets.load_breast_cancer(return_X_y=True)
        X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
        k = 4

        classifier_before = pyfms.Classifier(X.shape[1], k=k)
        classifier_before.fit(X_train, y_train, nb_epoch=1000)

        weights_before = classifier_before.get_weights()
        accuracy_before = accuracy_score(y_test, classifier_before.predict(X_test))

        classifier_file = os.path.join(self.workspace, 'classifier.fm')
        classifier_before.save_weights(classifier_file)

        classifier_after = pyfms.Classifier(X.shape[1])
        classifier_after.load_weights(classifier_file)

        weights_after = classifier_after.get_weights()
        accuracy_after = accuracy_score(y_test, classifier_after.predict(X_test))

        for wb, wa in zip(weights_before, weights_after):
            np.testing.assert_array_equal(wb, wa)
        self.assertEqual(accuracy_before, accuracy_after) 
開發者ID:dstein64,項目名稱:pyfms,代碼行數:25,代碼來源:test_pyfms.py

示例9: test_select_fdr_int

# 需要導入模塊: from sklearn import datasets [as 別名]
# 或者: from sklearn.datasets import load_breast_cancer [as 別名]
def test_select_fdr_int(self):
        model = SelectFdr()
        X, y = load_breast_cancer(return_X_y=True)
        model.fit(X, y)
        model_onnx = convert_sklearn(
            model, "select fdr",
            [("input", Int64TensorType([None, X.shape[1]]))])
        self.assertTrue(model_onnx is not None)
        dump_data_and_model(
            X.astype(np.int64),
            model,
            model_onnx,
            basename="SklearnSelectFdr",
            allow_failure="StrictVersion(onnx.__version__)"
                          " < StrictVersion('1.2') or "
                          "StrictVersion(onnxruntime.__version__)"
                          " <= StrictVersion('0.2.1')",
        ) 
開發者ID:onnx,項目名稱:sklearn-onnx,代碼行數:20,代碼來源:test_sklearn_feature_selection_converters.py

示例10: test_select_fwe_int

# 需要導入模塊: from sklearn import datasets [as 別名]
# 或者: from sklearn.datasets import load_breast_cancer [as 別名]
def test_select_fwe_int(self):
        model = SelectFwe()
        X, y = load_breast_cancer(return_X_y=True)
        model.fit(X, y)
        model_onnx = convert_sklearn(
            model, "select fwe",
            [("input", Int64TensorType([None, X.shape[1]]))])
        self.assertTrue(model_onnx is not None)
        dump_data_and_model(
            X.astype(np.int64),
            model,
            model_onnx,
            basename="SklearnSelectFwe",
            allow_failure="StrictVersion(onnx.__version__)"
                          " < StrictVersion('1.2') or "
                          "StrictVersion(onnxruntime.__version__)"
                          " <= StrictVersion('0.2.1')",
        ) 
開發者ID:onnx,項目名稱:sklearn-onnx,代碼行數:20,代碼來源:test_sklearn_feature_selection_converters.py

示例11: test_select_fdr_float

# 需要導入模塊: from sklearn import datasets [as 別名]
# 或者: from sklearn.datasets import load_breast_cancer [as 別名]
def test_select_fdr_float(self):
        model = SelectFdr()
        X, y = load_breast_cancer(return_X_y=True)
        model.fit(X, y)
        model_onnx = convert_sklearn(
            model, "select fdr",
            [("input", FloatTensorType([None, X.shape[1]]))])
        self.assertTrue(model_onnx is not None)
        dump_data_and_model(
            X.astype(np.float32),
            model,
            model_onnx,
            basename="SklearnSelectFdr",
            allow_failure="StrictVersion(onnx.__version__)"
                          " < StrictVersion('1.2') or "
                          "StrictVersion(onnxruntime.__version__)"
                          " <= StrictVersion('0.2.1')",
        ) 
開發者ID:onnx,項目名稱:sklearn-onnx,代碼行數:20,代碼來源:test_sklearn_feature_selection_converters.py

示例12: test_select_fwe_float

# 需要導入模塊: from sklearn import datasets [as 別名]
# 或者: from sklearn.datasets import load_breast_cancer [as 別名]
def test_select_fwe_float(self):
        model = SelectFwe()
        X, y = load_breast_cancer(return_X_y=True)
        model.fit(X, y)
        model_onnx = convert_sklearn(
            model, "select fwe",
            [("input", FloatTensorType([None, X.shape[1]]))])
        self.assertTrue(model_onnx is not None)
        dump_data_and_model(
            X.astype(np.float32),
            model,
            model_onnx,
            basename="SklearnSelectFwe",
            allow_failure="StrictVersion(onnx.__version__)"
                          " < StrictVersion('1.2') or "
                          "StrictVersion(onnxruntime.__version__)"
                          " <= StrictVersion('0.2.1')",
        ) 
開發者ID:onnx,項目名稱:sklearn-onnx,代碼行數:20,代碼來源:test_sklearn_feature_selection_converters.py

示例13: test_not_labels

# 需要導入模塊: from sklearn import datasets [as 別名]
# 或者: from sklearn.datasets import load_breast_cancer [as 別名]
def test_not_labels():
    data = load_breast_cancer()
    X = data.data
    y = data.target

    # convert class values to [0,2]
    # y = y * 2

    # Splitting data into train and test
    X_train, X_test, y_train, y_test = train_test_split(
        X, y, test_size=0.25, random_state=42)

    # sklearn
    clf_sklearn = linear_model.LogisticRegression()
    clf_sklearn.fit(X_train, y_train)
    y_pred_sklearn = clf_sklearn.predict(X_test)

    # h2o
    clf_h2o = h2o4gpu.LogisticRegression()
    clf_h2o.fit(X_train, y_train)
    y_pred_h2o = clf_h2o.predict(X_test)

    assert np.allclose(accuracy_score(y_test, y_pred_sklearn), accuracy_score(y_test, y_pred_h2o.squeeze())) 
開發者ID:h2oai,項目名稱:h2o4gpu,代碼行數:25,代碼來源:test_logistic.py

示例14: load_dataset

# 需要導入模塊: from sklearn import datasets [as 別名]
# 或者: from sklearn.datasets import load_breast_cancer [as 別名]
def load_dataset(encode_labels, rng):
    # Generate a classification dataset
    data = load_breast_cancer()
    X = data.data
    y = data.target
    if encode_labels is not None:
        y = np.take(encode_labels, y)
    # split the data into training and test data
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33,
                                                        random_state=rng)
    # Scale the variables to have 0 mean and unit variance
    scalar = StandardScaler()
    X_train = scalar.fit_transform(X_train)
    X_test = scalar.transform(X_test)
    # Split the data into training and DSEL for DS techniques
    X_train, X_dsel, y_train, y_dsel = train_test_split(X_train, y_train,
                                                        test_size=0.5,
                                                        random_state=rng)
    # Considering a pool composed of 10 base classifiers
    # Calibrating Perceptrons to estimate probabilities
    return X_dsel, X_test, X_train, y_dsel, y_test, y_train 
開發者ID:scikit-learn-contrib,項目名稱:DESlib,代碼行數:23,代碼來源:test_des_integration.py

示例15: test_meta_no_pool_of_classifiers

# 需要導入模塊: from sklearn import datasets [as 別名]
# 或者: from sklearn.datasets import load_breast_cancer [as 別名]
def test_meta_no_pool_of_classifiers(knn_methods):
    rng = np.random.RandomState(123456)

    data = load_breast_cancer()
    X = data.data
    y = data.target

    # split the data into training and test data
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33,
                                                        random_state=rng)
    # Scale the variables to have 0 mean and unit variance
    scalar = StandardScaler()
    X_train = scalar.fit_transform(X_train)
    X_test = scalar.transform(X_test)

    meta_des = METADES(knn_classifier=knn_methods, random_state=rng,
                       DSEL_perc=0.5)
    meta_des.fit(X_train, y_train)
    assert np.isclose(meta_des.score(X_test, y_test), 0.9095744680851063) 
開發者ID:scikit-learn-contrib,項目名稱:DESlib,代碼行數:21,代碼來源:test_des_integration.py


注:本文中的sklearn.datasets.load_breast_cancer方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。