當前位置: 首頁>>代碼示例>>Python>>正文


Python sklearn.datasets方法代碼示例

本文整理匯總了Python中sklearn.datasets方法的典型用法代碼示例。如果您正苦於以下問題:Python sklearn.datasets方法的具體用法?Python sklearn.datasets怎麽用?Python sklearn.datasets使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在sklearn的用法示例。


在下文中一共展示了sklearn.datasets方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_ShapLinearExplainer

# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import datasets [as 別名]
def test_ShapLinearExplainer(self):
        corpus, y = shap.datasets.imdb()
        corpus_train, corpus_test, y_train, y_test = train_test_split(corpus, y, test_size=0.2, random_state=7)

        vectorizer = TfidfVectorizer(min_df=10)
        X_train = vectorizer.fit_transform(corpus_train)
        X_test = vectorizer.transform(corpus_test)

        model = sklearn.linear_model.LogisticRegression(penalty="l1", C=0.1, solver='liblinear')
        model.fit(X_train, y_train)

        shapexplainer = LinearExplainer(model, X_train, feature_dependence="independent")
        shap_values = shapexplainer.explain_instance(X_test)
        print("Invoked Shap LinearExplainer")

    # comment this test as travis runs out of resources 
開發者ID:IBM,項目名稱:AIX360,代碼行數:18,代碼來源:test_shap.py

示例2: test_ShapGradientExplainer

# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import datasets [as 別名]
def test_ShapGradientExplainer(self):

    #     model = VGG16(weights='imagenet', include_top=True)
    #     X, y = shap.datasets.imagenet50()
    #     to_explain = X[[39, 41]]
    #
    #     url = "https://s3.amazonaws.com/deep-learning-models/image-models/imagenet_class_index.json"
    #     fname = shap.datasets.cache(url)
    #     with open(fname) as f:
    #         class_names = json.load(f)
    #
    #     def map2layer(x, layer):
    #         feed_dict = dict(zip([model.layers[0].input], [preprocess_input(x.copy())]))
    #         return K.get_session().run(model.layers[layer].input, feed_dict)
    #
    #     e = GradientExplainer((model.layers[7].input, model.layers[-1].output),
    #                           map2layer(preprocess_input(X.copy()), 7))
    #     shap_values, indexes = e.explain_instance(map2layer(to_explain, 7), ranked_outputs=2)
    #
          print("Skipped Shap GradientExplainer") 
開發者ID:IBM,項目名稱:AIX360,代碼行數:22,代碼來源:test_shap.py

示例3: test_download

# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import datasets [as 別名]
def test_download(tmpdata):
    """Test that fetch_mldata is able to download and cache a data set."""
    _urlopen_ref = datasets.mldata.urlopen
    datasets.mldata.urlopen = mock_mldata_urlopen({
        'mock': {
            'label': sp.ones((150,)),
            'data': sp.ones((150, 4)),
        },
    })
    try:
        mock = assert_warns(DeprecationWarning, fetch_mldata,
                            'mock', data_home=tmpdata)
        for n in ["COL_NAMES", "DESCR", "target", "data"]:
            assert_in(n, mock)

        assert_equal(mock.target.shape, (150,))
        assert_equal(mock.data.shape, (150, 4))

        assert_raises(datasets.mldata.HTTPError,
                      assert_warns, DeprecationWarning,
                      fetch_mldata, 'not_existing_name')
    finally:
        datasets.mldata.urlopen = _urlopen_ref 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:25,代碼來源:test_mldata.py

示例4: test_fetch_one_column

# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import datasets [as 別名]
def test_fetch_one_column(tmpdata):
    _urlopen_ref = datasets.mldata.urlopen
    try:
        dataname = 'onecol'
        # create fake data set in cache
        x = sp.arange(6).reshape(2, 3)
        datasets.mldata.urlopen = mock_mldata_urlopen({dataname: {'x': x}})

        dset = fetch_mldata(dataname, data_home=tmpdata)
        for n in ["COL_NAMES", "DESCR", "data"]:
            assert_in(n, dset)
        assert_not_in("target", dset)

        assert_equal(dset.data.shape, (2, 3))
        assert_array_equal(dset.data, x)

        # transposing the data array
        dset = fetch_mldata(dataname, transpose_data=False, data_home=tmpdata)
        assert_equal(dset.data.shape, (3, 2))
    finally:
        datasets.mldata.urlopen = _urlopen_ref 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:23,代碼來源:test_mldata.py

示例5: test_retry_with_clean_cache

# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import datasets [as 別名]
def test_retry_with_clean_cache(tmpdir):
    data_id = 61
    openml_path = sklearn.datasets.openml._DATA_FILE.format(data_id)
    cache_directory = str(tmpdir.mkdir('scikit_learn_data'))
    location = _get_local_path(openml_path, cache_directory)
    os.makedirs(os.path.dirname(location))

    with open(location, 'w') as f:
        f.write("")

    @_retry_with_clean_cache(openml_path, cache_directory)
    def _load_data():
        # The first call will raise an error since location exists
        if os.path.exists(location):
            raise Exception("File exist!")
        return 1

    warn_msg = "Invalid cache, redownloading file"
    with pytest.warns(RuntimeWarning, match=warn_msg):
        result = _load_data()
    assert result == 1 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:23,代碼來源:test_openml.py

示例6: test_fetch_openml_cache

# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import datasets [as 別名]
def test_fetch_openml_cache(monkeypatch, gzip_response, tmpdir):
    def _mock_urlopen_raise(request):
        raise ValueError('This mechanism intends to test correct cache'
                         'handling. As such, urlopen should never be '
                         'accessed. URL: %s' % request.get_full_url())
    data_id = 2
    cache_directory = str(tmpdir.mkdir('scikit_learn_data'))
    _monkey_patch_webbased_functions(
        monkeypatch, data_id, gzip_response)
    X_fetched, y_fetched = fetch_openml(data_id=data_id, cache=True,
                                        data_home=cache_directory,
                                        return_X_y=True)

    monkeypatch.setattr(sklearn.datasets.openml, 'urlopen',
                        _mock_urlopen_raise)

    X_cached, y_cached = fetch_openml(data_id=data_id, cache=True,
                                      data_home=cache_directory,
                                      return_X_y=True)
    np.testing.assert_array_equal(X_fetched, X_cached)
    np.testing.assert_array_equal(y_fetched, y_cached) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:23,代碼來源:test_openml.py

示例7: setup

# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import datasets [as 別名]
def setup(pblm):
        import sklearn.datasets
        iris = sklearn.datasets.load_iris()

        pblm.primary_task_key = 'iris'
        pblm.default_data_key = 'learn(all)'
        pblm.default_clf_key = 'RF'

        X_df = pd.DataFrame(iris.data, columns=iris.feature_names)
        samples = MultiTaskSamples(X_df.index)
        samples.apply_indicators(
            {'iris': {name: iris.target == idx
                      for idx, name in enumerate(iris.target_names)}})
        samples.X_dict = {'learn(all)': X_df}

        pblm.samples = samples
        pblm.xval_kw['type'] = 'StratifiedKFold' 
開發者ID:Erotemic,項目名稱:ibeis,代碼行數:19,代碼來源:clf_helpers.py

示例8: burczynski06

# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import datasets [as 別名]
def burczynski06() -> AnnData:
    """\
    Bulk data with conditions ulcerative colitis (UC) and Crohn's disease (CD).

    The study assesses transcriptional profiles in peripheral blood mononuclear
    cells from 42 healthy individuals, 59 CD patients, and 26 UC patients by
    hybridization to microarrays interrogating more than 22,000 sequences.

    Reference
    ---------
    Burczynski et al., "Molecular classification of Crohn's disease and
    ulcerative colitis patients using transcriptional profiles in peripheral
    blood mononuclear cells"
    J Mol Diagn 8, 51 (2006). PMID:16436634.
    """
    filename = settings.datasetdir / 'burczynski06/GDS1615_full.soft.gz'
    url = 'ftp://ftp.ncbi.nlm.nih.gov/geo/datasets/GDS1nnn/GDS1615/soft/GDS1615_full.soft.gz'
    adata = read(filename, backup_url=url)
    return adata 
開發者ID:theislab,項目名稱:scanpy,代碼行數:21,代碼來源:_datasets.py

示例9: pbmc68k_reduced

# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import datasets [as 別名]
def pbmc68k_reduced() -> AnnData:
    """\
    Subsampled and processed 68k PBMCs.

    10x PBMC 68k dataset from
    https://support.10xgenomics.com/single-cell-gene-expression/datasets

    The original PBMC 68k dataset was preprocessed using scanpy and was saved
    keeping only 724 cells and 221 highly variable genes.

    The saved file contains the annotation of cell types (key: `'bulk_labels'`),
    UMAP coordinates, louvain clustering and gene rankings based on the
    `bulk_labels`.

    Returns
    -------
    Annotated data matrix.
    """

    filename = HERE / '10x_pbmc68k_reduced.h5ad'
    with warnings.catch_warnings():
        warnings.filterwarnings("ignore", category=FutureWarning, module="anndata")
        return read(filename) 
開發者ID:theislab,項目名稱:scanpy,代碼行數:25,代碼來源:_datasets.py

示例10: __init__

# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import datasets [as 別名]
def __init__(self, subset, shuffle=True, random_state=42):
        if subset == "all":
            shuffle = False  # chronological split violated if shuffled
        else:
            shuffle = shuffle

        dataset = sklearn.datasets.fetch_rcv1(subset=subset, shuffle=shuffle, random_state=random_state)
        self.data = dataset.data
        self.labels = dataset.target
        self.class_names = dataset.target_names

        assert len(self.class_names) == 103  # 103 categories according to LYRL2004
        N, C = self.labels.shape
        assert C == len(self.class_names)

        N, V = self.data.shape
        self.vocab = np.zeros(V)  # hacky workaround to create placeholder value
        self.orig_vocab_size = V 
開發者ID:SuyashLakhotia,項目名稱:TextCategorization,代碼行數:20,代碼來源:data.py

示例11: _bunch_to_df

# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import datasets [as 別名]
def _bunch_to_df(bunch, schema_X, schema_y, test_size=0.2, random_state=42):
    train_X_arr, test_X_arr, train_y_arr, test_y_arr = train_test_split(
        bunch.data, bunch.target,
        test_size=test_size, random_state=random_state)
    feature_schemas = schema_X['items']['items']
    if isinstance(feature_schemas, list):
        feature_names = [f['description'] for f in feature_schemas]
    else:
        feature_names = [f'x{i}' for i in range(schema_X['items']['maxItems'])]
    train_X_df = pd.DataFrame(train_X_arr, columns=feature_names)
    test_X_df = pd.DataFrame(test_X_arr, columns=feature_names)
    train_y_df = pd.Series(train_y_arr, name='target')
    test_y_df = pd.Series(test_y_arr, name='target')
    train_nrows, test_nrows = train_X_df.shape[0], test_X_df.shape[0]
    train_X = lale.datasets.data_schemas.add_schema(train_X_df, {
        **schema_X, 'minItems': train_nrows, 'maxItems': train_nrows })
    test_X = lale.datasets.data_schemas.add_schema(test_X_df, {
        **schema_X, 'minItems': test_nrows, 'maxItems': test_nrows })
    train_y = lale.datasets.data_schemas.add_schema(train_y_df, {
        **schema_y, 'minItems': train_nrows, 'maxItems': train_nrows })
    test_y = lale.datasets.data_schemas.add_schema(test_y_df, {
        **schema_y, 'minItems': test_nrows, 'maxItems': test_nrows })
    return (train_X, train_y), (test_X, test_y) 
開發者ID:IBM,項目名稱:lale,代碼行數:25,代碼來源:sklearn_to_pandas.py

示例12: load_iris_df

# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import datasets [as 別名]
def load_iris_df(test_size=0.2):
    iris = sklearn.datasets.load_iris()
    X = iris.data
    y = iris.target
    target_name = 'target'
    X, y = shuffle(iris.data, iris.target, random_state=42)
    X_train, X_test, y_train, y_test = train_test_split(
        X, y, test_size=test_size, random_state=42)

    X_train_df = pd.DataFrame(X_train, columns = iris.feature_names)
    y_train_df = pd.Series(y_train, name = target_name)

    X_test_df = pd.DataFrame(X_test, columns = iris.feature_names)
    y_test_df = pd.Series(y_test, name = target_name)

    return (X_train_df, y_train_df), (X_test_df, y_test_df) 
開發者ID:IBM,項目名稱:lale,代碼行數:18,代碼來源:sklearn_to_pandas.py

示例13: digits_df

# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import datasets [as 別名]
def digits_df(test_size=0.2, random_state=42):
    digits = sklearn.datasets.load_digits()
    ncols = digits.data.shape[1]
    schema_X = {
      'description': 'Features of digits dataset (classification).',
      'documentation_url': 'https://scikit-learn.org/0.20/datasets/index.html#optical-recognition-of-handwritten-digits-dataset',
      'type': 'array',
      'items': {
        'type': 'array',
        'minItems': ncols, 'maxItems': ncols,
        'items': {
          'type': 'number', 'minimum': 0, 'maximum': 16}}}
    schema_y = {
      '$schema': 'http://json-schema.org/draft-04/schema#',
      'type': 'array',
      'items': {
        'type': 'integer', 'minimum': 0, 'maximum': 9}}
    (train_X, train_y), (test_X, test_y) = _bunch_to_df(
        digits, schema_X, schema_y, test_size, random_state)
    return (train_X, train_y), (test_X, test_y) 
開發者ID:IBM,項目名稱:lale,代碼行數:22,代碼來源:sklearn_to_pandas.py

示例14: synthesize_data

# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import datasets [as 別名]
def synthesize_data(n_samples, n_features, n_targets):
    rnd = await mpc.transfer(random.randrange(2**31), senders=0)
    X, Y = sklearn.datasets.make_regression(n_samples=n_samples,
                                            n_features=n_features,
                                            n_informative=max(1, n_features - 5),
                                            n_targets=n_targets, bias=42,
                                            effective_rank=max(1, n_features - 3),
                                            tail_strength=0.5, noise=1.2,
                                            random_state=rnd)  # all parties use same rnd
    if n_targets == 1:
        Y = np.transpose([Y])
    X = np.concatenate((X, Y), axis=1)
    b_m = np.min(X, axis=0)
    b_M = np.max(X, axis=0)
    coef_add = [-(m + M) / 2 for m, M in zip(b_m, b_M)]
    coef_mul = [2 / (M - m) for m, M in zip(b_m, b_M)]
    for xi in X:
        for j in range(len(xi)):
            # map to [-1,1] range
            xi[j] = (xi[j] + coef_add[j]) * coef_mul[j]
    return X 
開發者ID:lschoe,項目名稱:mpyc,代碼行數:23,代碼來源:ridgeregression.py

示例15: mnist

# 需要導入模塊: import sklearn [as 別名]
# 或者: from sklearn import datasets [as 別名]
def mnist(random_state=42):
    """
    x is in [0, 1] with shape (b, 1, 28, 28) and dtype floatX
    y is an int32 vector in range(10)
    """
    raw = sklearn.datasets.fetch_mldata('MNIST original')
    # rescaling to [0, 1] instead of [0, 255]
    x = raw['data'].reshape(-1, 1, 28, 28).astype(fX) / 255.0
    y = raw['target'].astype("int32")
    # NOTE: train data is initially in order of 0 through 9
    x1, x2, y1, y2 = sklearn.cross_validation.train_test_split(
        x[:60000],
        y[:60000],
        random_state=random_state,
        test_size=10000)
    train = {"x": x1, "y": y1}
    valid = {"x": x2, "y": y2}
    # NOTE: test data is in order of 0 through 9
    test = {"x": x[60000:], "y": y[60000:]}
    return train, valid, test 
開發者ID:diogo149,項目名稱:treeano,代碼行數:22,代碼來源:datasets.py


注:本文中的sklearn.datasets方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。