當前位置: 首頁>>代碼示例>>Python>>正文


Python datasets.fetch_mldata方法代碼示例

本文整理匯總了Python中sklearn.datasets.fetch_mldata方法的典型用法代碼示例。如果您正苦於以下問題:Python datasets.fetch_mldata方法的具體用法?Python datasets.fetch_mldata怎麽用?Python datasets.fetch_mldata使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在sklearn.datasets的用法示例。


在下文中一共展示了datasets.fetch_mldata方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: load_data

# 需要導入模塊: from sklearn import datasets [as 別名]
# 或者: from sklearn.datasets import fetch_mldata [as 別名]
def load_data(dtype=np.float32, order='F'):
    """Load the data, then cache and memmap the train/test split"""
    ######################################################################
    # Load dataset
    safe_print("Loading dataset...")
    data = fetch_mldata('MNIST original')
    X = check_array(data['data'], dtype=dtype, order=order)
    y = data["target"]

    # Normalize features
    X = X / 255

    # Create train-test split (as [Joachims, 2006])
    safe_print("Creating train-test split...")
    n_train = 60000
    X_train = X[:n_train]
    y_train = y[:n_train]
    X_test = X[n_train:]
    y_test = y[n_train:]

    return X_train, X_test, y_train, y_test 
開發者ID:flennerhag,項目名稱:mlens,代碼行數:23,代碼來源:mnist.py

示例2: test_download

# 需要導入模塊: from sklearn import datasets [as 別名]
# 或者: from sklearn.datasets import fetch_mldata [as 別名]
def test_download(tmpdata):
    """Test that fetch_mldata is able to download and cache a data set."""
    _urlopen_ref = datasets.mldata.urlopen
    datasets.mldata.urlopen = mock_mldata_urlopen({
        'mock': {
            'label': sp.ones((150,)),
            'data': sp.ones((150, 4)),
        },
    })
    try:
        mock = assert_warns(DeprecationWarning, fetch_mldata,
                            'mock', data_home=tmpdata)
        for n in ["COL_NAMES", "DESCR", "target", "data"]:
            assert_in(n, mock)

        assert_equal(mock.target.shape, (150,))
        assert_equal(mock.data.shape, (150, 4))

        assert_raises(datasets.mldata.HTTPError,
                      assert_warns, DeprecationWarning,
                      fetch_mldata, 'not_existing_name')
    finally:
        datasets.mldata.urlopen = _urlopen_ref 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:25,代碼來源:test_mldata.py

示例3: test_fetch_one_column

# 需要導入模塊: from sklearn import datasets [as 別名]
# 或者: from sklearn.datasets import fetch_mldata [as 別名]
def test_fetch_one_column(tmpdata):
    _urlopen_ref = datasets.mldata.urlopen
    try:
        dataname = 'onecol'
        # create fake data set in cache
        x = sp.arange(6).reshape(2, 3)
        datasets.mldata.urlopen = mock_mldata_urlopen({dataname: {'x': x}})

        dset = fetch_mldata(dataname, data_home=tmpdata)
        for n in ["COL_NAMES", "DESCR", "data"]:
            assert_in(n, dset)
        assert_not_in("target", dset)

        assert_equal(dset.data.shape, (2, 3))
        assert_array_equal(dset.data, x)

        # transposing the data array
        dset = fetch_mldata(dataname, transpose_data=False, data_home=tmpdata)
        assert_equal(dset.data.shape, (3, 2))
    finally:
        datasets.mldata.urlopen = _urlopen_ref 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:23,代碼來源:test_mldata.py

示例4: mnist

# 需要導入模塊: from sklearn import datasets [as 別名]
# 或者: from sklearn.datasets import fetch_mldata [as 別名]
def mnist(missingness="mcar", thr=0.2):
    """ Loads corrupted MNIST

    Parameters
    ----------
    missingness: ('mcar', 'mar', 'mnar')
        Type of missigness you want in your dataset
    th: float between [0,1]
        Percentage of missing data in generated data

    Returns
    -------
    numpy.ndarray
    """
    from sklearn.datasets import fetch_mldata
    dataset = fetch_mldata('MNIST original')
    corruptor = Corruptor(dataset.data, thr=thr)
    data = getattr(corruptor, missingness)()
    return {"X": data, "Y": dataset.target} 
開發者ID:eltonlaw,項目名稱:impyute,代碼行數:21,代碼來源:base.py

示例5: train

# 需要導入模塊: from sklearn import datasets [as 別名]
# 或者: from sklearn.datasets import fetch_mldata [as 別名]
def train(self, n_epochs, batch_size=128, save_interval=50):

        mnist = fetch_mldata('MNIST original')

        X = mnist.data
        y = mnist.target

        # Rescale [-1, 1]
        X = (X.astype(np.float32) - 127.5) / 127.5

        for epoch in range(n_epochs):

            # Select a random half batch of images
            idx = np.random.randint(0, X.shape[0], batch_size)
            imgs = X[idx]

            # Train the Autoencoder
            loss, _ = self.autoencoder.train_on_batch(imgs, imgs)

            # Display the progress
            print ("%d [D loss: %f]" % (epoch, loss))

            # If at save interval => save generated image samples
            if epoch % save_interval == 0:
                self.save_imgs(epoch, X) 
開發者ID:eriklindernoren,項目名稱:ML-From-Scratch,代碼行數:27,代碼來源:autoencoder.py

示例6: test_download

# 需要導入模塊: from sklearn import datasets [as 別名]
# 或者: from sklearn.datasets import fetch_mldata [as 別名]
def test_download():
    """Test that fetch_mldata is able to download and cache a data set."""

    _urlopen_ref = datasets.mldata.urlopen
    datasets.mldata.urlopen = mock_mldata_urlopen({
        'mock': {
            'label': sp.ones((150,)),
            'data': sp.ones((150, 4)),
        },
    })
    try:
        mock = fetch_mldata('mock', data_home=tmpdir)
        for n in ["COL_NAMES", "DESCR", "target", "data"]:
            assert_in(n, mock)

        assert_equal(mock.target.shape, (150,))
        assert_equal(mock.data.shape, (150, 4))

        assert_raises(datasets.mldata.HTTPError,
                      fetch_mldata, 'not_existing_name')
    finally:
        datasets.mldata.urlopen = _urlopen_ref 
開發者ID:alvarobartt,項目名稱:twitter-stock-recommendation,代碼行數:24,代碼來源:test_mldata.py

示例7: test_fetch_one_column

# 需要導入模塊: from sklearn import datasets [as 別名]
# 或者: from sklearn.datasets import fetch_mldata [as 別名]
def test_fetch_one_column():
    _urlopen_ref = datasets.mldata.urlopen
    try:
        dataname = 'onecol'
        # create fake data set in cache
        x = sp.arange(6).reshape(2, 3)
        datasets.mldata.urlopen = mock_mldata_urlopen({dataname: {'x': x}})

        dset = fetch_mldata(dataname, data_home=tmpdir)
        for n in ["COL_NAMES", "DESCR", "data"]:
            assert_in(n, dset)
        assert_not_in("target", dset)

        assert_equal(dset.data.shape, (2, 3))
        assert_array_equal(dset.data, x)

        # transposing the data array
        dset = fetch_mldata(dataname, transpose_data=False, data_home=tmpdir)
        assert_equal(dset.data.shape, (3, 2))
    finally:
        datasets.mldata.urlopen = _urlopen_ref 
開發者ID:alvarobartt,項目名稱:twitter-stock-recommendation,代碼行數:23,代碼來源:test_mldata.py

示例8: get_mnist

# 需要導入模塊: from sklearn import datasets [as 別名]
# 或者: from sklearn.datasets import fetch_mldata [as 別名]
def get_mnist():
    """ Gets MNIST dataset """

    np.random.seed(1234) # set seed for deterministic ordering
    data_path = os.path.dirname(os.path.abspath(os.path.expanduser(__file__)))
    data_path = os.path.join(data_path, '../../data')
    mnist = fetch_mldata('MNIST original', data_home=data_path)
    p = np.random.permutation(mnist.data.shape[0])
    X = mnist.data[p].astype(np.float32)*0.02
    Y = mnist.target[p]
    return X, Y 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:13,代碼來源:data.py

示例9: get_mnist

# 需要導入模塊: from sklearn import datasets [as 別名]
# 或者: from sklearn.datasets import fetch_mldata [as 別名]
def get_mnist():
    np.random.seed(1234) # set seed for deterministic ordering
    data_path = os.path.dirname(os.path.abspath(os.path.expanduser(__file__)))
    data_path = os.path.join(data_path, '../../data')
    mnist = fetch_mldata('MNIST original', data_home=data_path)
    p = np.random.permutation(mnist.data.shape[0])
    X = mnist.data[p].astype(np.float32)*0.02
    Y = mnist.target[p]
    return X, Y 
開發者ID:awslabs,項目名稱:dynamic-training-with-apache-mxnet-on-aws,代碼行數:11,代碼來源:data.py

示例10: MNIST_dataload

# 需要導入模塊: from sklearn import datasets [as 別名]
# 或者: from sklearn.datasets import fetch_mldata [as 別名]
def MNIST_dataload():
    from sklearn.datasets import fetch_mldata
    import numpy as np
    mnist = fetch_mldata('MNIST original')
    Data = mnist.data
    label = mnist.target
    return Data,label 
開發者ID:bbdamodaran,項目名稱:deepJDOT,代碼行數:9,代碼來源:DatasetLoad.py

示例11: load_data_target

# 需要導入模塊: from sklearn import datasets [as 別名]
# 或者: from sklearn.datasets import fetch_mldata [as 別名]
def load_data_target(name):
    """
    Loads data and target given the name of the dataset.
    """
    if name == "Boston":
        data = load_boston()
    elif name == "Housing":
        data = fetch_california_housing()
        dataset_size = 1000 # this is necessary so that SVR does not slow down too much
        data["data"] = data["data"][:dataset_size]
        data["target"] =data["target"][:dataset_size]
    elif name == "digits":
        data = load_digits()
    elif name == "Climate Model Crashes":
        try:
            data = fetch_mldata("climate-model-simulation-crashes")
        except HTTPError as e:
            url = "https://archive.ics.uci.edu/ml/machine-learning-databases/00252/pop_failures.dat"
            data = urlopen(url).read().split('\n')[1:]
            data = [[float(v) for v in d.split()] for d in data]
            samples = np.array(data)
            data = dict()
            data["data"] = samples[:, :-1]
            data["target"] = np.array(samples[:, -1], dtype=np.int)
    else:
        raise ValueError("dataset not supported.")
    return data["data"], data["target"] 
開發者ID:scikit-optimize,項目名稱:scikit-optimize,代碼行數:29,代碼來源:bench_ml.py

示例12: training_data

# 需要導入模塊: from sklearn import datasets [as 別名]
# 或者: from sklearn.datasets import fetch_mldata [as 別名]
def training_data():
    """Get the `MNIST original` training data."""
    _np.random.seed(1)
    permutation = _np.random.permutation(range(60000))
    mnist = _fetch_mldata('MNIST original',
                          data_home=_os.path.join(_DATA_FOLDER,
                                                  'MNIST_original'))
    return (mnist.data[:60000, :][permutation, :].reshape((60000, 1, 28, 28)).astype('float32'),
            mnist.target[:60000][permutation].reshape((60000, 1)).astype('float32')) 
開發者ID:classner,項目名稱:barrista,代碼行數:11,代碼來源:data.py

示例13: test_data

# 需要導入模塊: from sklearn import datasets [as 別名]
# 或者: from sklearn.datasets import fetch_mldata [as 別名]
def test_data():
    """Get the `MNIST original` test data."""
    mnist = _fetch_mldata('MNIST original',
                          data_home=_os.path.join(_DATA_FOLDER,
                                                  'MNIST_original'))
    return (mnist.data[60000:, :].reshape((10000, 1, 28, 28)).astype('float32'),
            mnist.target[60000:].reshape((10000, 1)).astype('float32')) 
開發者ID:classner,項目名稱:barrista,代碼行數:9,代碼來源:data.py

示例14: main

# 需要導入模塊: from sklearn import datasets [as 別名]
# 或者: from sklearn.datasets import fetch_mldata [as 別名]
def main():
    from sklearn.datasets import load_digits, fetch_mldata

    SMALL_MNIST = False

    if SMALL_MNIST:
        mnist_digits = load_digits()
        n_input = np.prod(mnist_digits.images.shape[1:])
        n_images = len(mnist_digits.images)  # 1797
        data_images = mnist_digits.images.reshape(n_images, -1) / 16.  # -> 1797 x 64
        data_targets = mnist_digits.target
        # im_size_x, im_size_y = 8, 8
    else:
        mnist_digits = fetch_mldata('MNIST original')
        n_input = np.prod(mnist_digits.data.shape[1:])
        data_images = mnist_digits.data / 255.  # -> 70000 x 284
        data_targets = mnist_digits.target
        # im_size_x, im_size_y = 28, 28

    n_hidden, n_output = 5, 10
    nn = NeuralNetworkClassifier(n_input, n_hidden, n_output)
    weight_shapes = nn.get_weights_shapes()
    weights = []
    for weight_shape in weight_shapes:
        weights.append(np.random.randn(*weight_shape))
    nn.set_weights(*weights)
    score = nn.score(data_images, data_targets)
    print("Score is: ", score) 
開發者ID:IGITUGraz,項目名稱:L2L,代碼行數:30,代碼來源:nn.py

示例15: __init__

# 需要導入模塊: from sklearn import datasets [as 別名]
# 或者: from sklearn.datasets import fetch_mldata [as 別名]
def __init__(self, traj, parameters):
        super().__init__(traj)

        if parameters.use_small_mnist:
            # 8 x 8 images
            mnist_digits = load_digits()
            n_input = np.prod(mnist_digits.images.shape[1:])
            n_images = len(mnist_digits.images)  # 1797
            data_images = mnist_digits.images.reshape(n_images, -1) / 16.  # -> 1797 x 64
            data_targets = mnist_digits.target
        else:
            # 28 x 28 images
            mnist_digits = fetch_mldata('MNIST original')
            n_input = np.prod(mnist_digits.data.shape[1:])
            data_images = mnist_digits.data / 255.  # -> 70000 x 284
            n_images = len(data_images)
            data_targets = mnist_digits.target

        self.n_images = n_images
        self.data_images, self.data_targets = data_images, data_targets

        seed = parameters.seed
        n_hidden = parameters.n_hidden

        seed = np.uint32(seed)
        self.random_state = np.random.RandomState(seed=seed)

        n_output = 10  # This is always true for mnist
        self.nn = NeuralNetworkClassifier(n_input, n_hidden, n_output)

        self.random_state = np.random.RandomState(seed=seed)

        # create_individual can be called because __init__ is complete except for traj initializtion
        indiv_dict = self.create_individual()
        for key, val in indiv_dict.items():
            traj.individual.f_add_parameter(key, val)
        traj.individual.f_add_parameter('seed', seed) 
開發者ID:IGITUGraz,項目名稱:L2L,代碼行數:39,代碼來源:optimizee.py


注:本文中的sklearn.datasets.fetch_mldata方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。