本文整理匯總了Python中sklearn.datasets.fetch_20newsgroups方法的典型用法代碼示例。如果您正苦於以下問題:Python datasets.fetch_20newsgroups方法的具體用法?Python datasets.fetch_20newsgroups怎麽用?Python datasets.fetch_20newsgroups使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類sklearn.datasets
的用法示例。
在下文中一共展示了datasets.fetch_20newsgroups方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_validate_sklearn_sgd_with_text_cv
# 需要導入模塊: from sklearn import datasets [as 別名]
# 或者: from sklearn.datasets import fetch_20newsgroups [as 別名]
def test_validate_sklearn_sgd_with_text_cv(self):
categories = ['alt.atheism','talk.religion.misc']
data = fetch_20newsgroups(subset='train', categories=categories)
X = data.data[:4]
Y = data.target[:4]
features = ['input']
target = 'output'
model = SGDClassifier(loss="log")
file_name = model.__class__.__name__ + '_CountVec_.pmml'
pipeline = Pipeline([
('vect', CountVectorizer()),
('clf', model)
])
pipeline.fit(X, Y)
skl_to_pmml(pipeline, features , target, file_name)
self.assertEqual(self.schema.is_valid(file_name), True)
示例2: __init__
# 需要導入模塊: from sklearn import datasets [as 別名]
# 或者: from sklearn.datasets import fetch_20newsgroups [as 別名]
def __init__(self,
cache: bool = False,
transform: Dict[str, Union[Field, Dict]] = None) -> None:
"""Initialize the NewsGroupDataset builtin."""
try:
from sklearn.datasets import fetch_20newsgroups
except ImportError:
raise ImportError("Install sklearn to use the NewsGroupDataset")
train = fetch_20newsgroups(subset='train')
test = fetch_20newsgroups(subset='test')
train = [(' '.join(d.split()), str(t)) for d, t in zip(train['data'], train['target'])]
test = [(' '.join(d.split()), str(t)) for d, t in zip(test['data'], test['target'])]
named_cols = ['text', 'label']
super().__init__(
train=train,
val=None,
test=test,
cache=cache,
named_columns=named_cols,
transform=transform
)
示例3: load
# 需要導入模塊: from sklearn import datasets [as 別名]
# 或者: from sklearn.datasets import fetch_20newsgroups [as 別名]
def load(self):
categories = ['comp.sys.ibm.pc.hardware', 'comp.sys.mac.hardware']
newsgroups_train = fetch_20newsgroups(
subset='train', remove=('headers', 'footers', 'quotes'), categories=categories)
newsgroups_test = fetch_20newsgroups(
subset='test', remove=('headers', 'footers', 'quotes'), categories=categories)
vectorizer = TfidfVectorizer(stop_words='english', min_df=0.001, max_df=0.20)
vectors = vectorizer.fit_transform(newsgroups_train.data)
vectors_test = vectorizer.transform(newsgroups_test.data)
x1 = vectors
y1 = newsgroups_train.target
x2 = vectors_test
y2 = newsgroups_test.target
x = np.array(np.r_[x1.todense(), x2.todense()])
y = np.r_[y1, y2]
return x, y
示例4: _te_ss_t_build
# 需要導入模塊: from sklearn import datasets [as 別名]
# 或者: from sklearn.datasets import fetch_20newsgroups [as 別名]
def _te_ss_t_build(self):
from sklearn.datasets import fetch_20newsgroups
from sklearn.feature_extraction.text import CountVectorizer
newsgroups_train = fetch_20newsgroups(subset='train', remove=('headers', 'footers', 'quotes'))
count_vectorizer = CountVectorizer()
X_counts = count_vectorizer.fit_transform(newsgroups_train.data)
corpus = CorpusFromScikit(
X=X_counts,
y=newsgroups_train.target,
feature_vocabulary=count_vectorizer.vocabulary_,
category_names=newsgroups_train.target_names,
raw_texts=newsgroups_train.data
).build()
self.assertEqual(corpus.get_categories()[:2], ['alt.atheism', 'comp.graphics'])
self.assertEqual(corpus
.get_term_freq_df()
.assign(score=corpus.get_scaled_f_scores('alt.atheism'))
.sort_values(by='score', ascending=False).index.tolist()[:5],
['atheism', 'atheists', 'islam', 'atheist', 'belief'])
self.assertGreater(len(corpus.get_texts()[0]), 5)
示例5: test_MinHashEncoder
# 需要導入模塊: from sklearn import datasets [as 別名]
# 或者: from sklearn.datasets import fetch_20newsgroups [as 別名]
def test_MinHashEncoder(n_sample=70, minmax_hash=False):
X_txt = fetch_20newsgroups(subset='train')['data']
X = X_txt[:n_sample]
for minmax_hash in [True, False]:
for hashing in ['fast', 'murmur']:
if minmax_hash and hashing == 'murmur':
pass # not implemented
# Test output shape
encoder = MinHashEncoder(n_components=50, hashing=hashing)
encoder.fit(X)
y = encoder.transform(X)
assert y.shape == (n_sample, 50), str(y.shape)
assert len(set(y[0])) == 50
# Test same seed return the same output
encoder = MinHashEncoder(50, hashing=hashing)
encoder.fit(X)
y2 = encoder.transform(X)
np.testing.assert_array_equal(y, y2)
# Test min property
if not minmax_hash:
X_substring = [x[:x.find(' ')] for x in X]
encoder = MinHashEncoder(50, hashing=hashing)
encoder.fit(X_substring)
y_substring = encoder.transform(X_substring)
np.testing.assert_array_less(y - y_substring, 0.0001)
示例6: test_validate_sklearn_sgd_with_text
# 需要導入模塊: from sklearn import datasets [as 別名]
# 或者: from sklearn.datasets import fetch_20newsgroups [as 別名]
def test_validate_sklearn_sgd_with_text(self):
categories = ['alt.atheism','talk.religion.misc']
data = fetch_20newsgroups(subset='train', categories=categories)
X = data.data[:4]
Y = data.target[:4]
features = ['input']
target = 'output'
model = SGDClassifier(loss="log")
file_name = model.__class__.__name__ + '_TfIdfVec_.pmml'
pipeline = Pipeline([
('vect', TfidfVectorizer()),
('clf', model)
])
pipeline.fit(X, Y)
skl_to_pmml(pipeline, features , target, file_name)
self.assertEqual(self.schema.is_valid(file_name), True)
示例7: ng
# 需要導入模塊: from sklearn import datasets [as 別名]
# 或者: from sklearn.datasets import fetch_20newsgroups [as 別名]
def ng(partitions=['train', 'test']):
'''loads 20 NewsGroups topic classification dataset
Args:
partitions: component(s) of data to load; can be a string (for one partition) or list of strings
Returns:
((list of documents, list of labels) for each partition)
'''
if type(partitions) == str:
data = fetch_20newsgroups(subset=partitions)
return data['data'], list(data['target'])
output = []
for partition in partitions:
data = fetch_20newsgroups(subset=partition)
output.append((data['data'], list(data['target'])))
return output
示例8: create_binary_newsgroups_data
# 需要導入模塊: from sklearn import datasets [as 別名]
# 或者: from sklearn.datasets import fetch_20newsgroups [as 別名]
def create_binary_newsgroups_data():
categories = ["alt.atheism", "soc.religion.christian"]
newsgroups_train = fetch_20newsgroups(subset="train", categories=categories)
newsgroups_test = fetch_20newsgroups(subset="test", categories=categories)
class_names = ["atheism", "christian"]
return newsgroups_train, newsgroups_test, class_names
示例9: fetch_data
# 需要導入模塊: from sklearn import datasets [as 別名]
# 或者: from sklearn.datasets import fetch_20newsgroups [as 別名]
def fetch_data(path):
from sklearn.datasets import fetch_20newsgroups
categories = ['comp.graphics', 'rec.sport.baseball', 'talk.politics.guns']
dataset = fetch_20newsgroups(path, categories=categories)
return dataset
示例10: test_fast_hash
# 需要導入模塊: from sklearn import datasets [as 別名]
# 或者: from sklearn.datasets import fetch_20newsgroups [as 別名]
def test_fast_hash():
from sklearn import datasets
data = datasets.fetch_20newsgroups()
a = data.data[0]
min_hash = ngram_min_hash(a, seed=0)
min_hash2 = ngram_min_hash(a, seed=0)
assert min_hash == min_hash2
list_min_hash = [ngram_min_hash(a, seed=seed) for seed in range(50)]
assert len(set(list_min_hash)) > 45, 'Too many hash collisions'
min_hash4 = ngram_min_hash(a, seed=0, return_minmax=True)
assert len(min_hash4) == 2
示例11: test_20news
# 需要導入模塊: from sklearn import datasets [as 別名]
# 或者: from sklearn.datasets import fetch_20newsgroups [as 別名]
def test_20news():
try:
data = datasets.fetch_20newsgroups(
subset='all', download_if_missing=False, shuffle=False)
except IOError:
raise SkipTest("Download 20 newsgroups to run this test")
# Extract a reduced dataset
data2cats = datasets.fetch_20newsgroups(
subset='all', categories=data.target_names[-1:-3:-1], shuffle=False)
# Check that the ordering of the target_names is the same
# as the ordering in the full dataset
assert_equal(data2cats.target_names,
data.target_names[-2:])
# Assert that we have only 0 and 1 as labels
assert_equal(np.unique(data2cats.target).tolist(), [0, 1])
# Check that the number of filenames is consistent with data/target
assert_equal(len(data2cats.filenames), len(data2cats.target))
assert_equal(len(data2cats.filenames), len(data2cats.data))
# Check that the first entry of the reduced dataset corresponds to
# the first entry of the corresponding category in the full dataset
entry1 = data2cats.data[0]
category = data2cats.target_names[data2cats.target[0]]
label = data.target_names.index(category)
entry2 = data.data[np.where(data.target == label)[0][0]]
assert_equal(entry1, entry2)
示例12: test_20news_length_consistency
# 需要導入模塊: from sklearn import datasets [as 別名]
# 或者: from sklearn.datasets import fetch_20newsgroups [as 別名]
def test_20news_length_consistency():
"""Checks the length consistencies within the bunch
This is a non-regression test for a bug present in 0.16.1.
"""
try:
data = datasets.fetch_20newsgroups(
subset='all', download_if_missing=False, shuffle=False)
except IOError:
raise SkipTest("Download 20 newsgroups to run this test")
# Extract the full dataset
data = datasets.fetch_20newsgroups(subset='all')
assert_equal(len(data['data']), len(data.data))
assert_equal(len(data['target']), len(data.target))
assert_equal(len(data['filenames']), len(data.filenames))
示例13: test_20news_vectorized
# 需要導入模塊: from sklearn import datasets [as 別名]
# 或者: from sklearn.datasets import fetch_20newsgroups [as 別名]
def test_20news_vectorized():
try:
datasets.fetch_20newsgroups(subset='all',
download_if_missing=False)
except IOError:
raise SkipTest("Download 20 newsgroups to run this test")
# test subset = train
bunch = datasets.fetch_20newsgroups_vectorized(subset="train")
assert sp.isspmatrix_csr(bunch.data)
assert_equal(bunch.data.shape, (11314, 130107))
assert_equal(bunch.target.shape[0], 11314)
assert_equal(bunch.data.dtype, np.float64)
# test subset = test
bunch = datasets.fetch_20newsgroups_vectorized(subset="test")
assert sp.isspmatrix_csr(bunch.data)
assert_equal(bunch.data.shape, (7532, 130107))
assert_equal(bunch.target.shape[0], 7532)
assert_equal(bunch.data.dtype, np.float64)
# test return_X_y option
fetch_func = partial(datasets.fetch_20newsgroups_vectorized, subset='test')
check_return_X_y(bunch, fetch_func)
# test subset = all
bunch = datasets.fetch_20newsgroups_vectorized(subset='all')
assert sp.isspmatrix_csr(bunch.data)
assert_equal(bunch.data.shape, (11314 + 7532, 130107))
assert_equal(bunch.target.shape[0], 11314 + 7532)
assert_equal(bunch.data.dtype, np.float64)
示例14: setUp
# 需要導入模塊: from sklearn import datasets [as 別名]
# 或者: from sklearn.datasets import fetch_20newsgroups [as 別名]
def setUp(self):
"""Carga de los datos de prueba (20 Newsgroups corpus)."""
newsdata = fetch_20newsgroups(data_home="./data/")
self.ids = [str(i) for i in range(len(newsdata.target))]
self.texts = newsdata.data
self.labels = [newsdata.target_names[idx] for idx in newsdata.target]
self.tc = TextClassifier(self.texts, self.ids)
示例15: load_newsgroups
# 需要導入模塊: from sklearn import datasets [as 別名]
# 或者: from sklearn.datasets import fetch_20newsgroups [as 別名]
def load_newsgroups():
"""20 News Groups Dataset.
The data of this dataset is a 1d numpy array vector containing the texts
from 11314 newsgroups posts, and the target is a 1d numpy integer array
containing the label of one of the 20 topics that they are about.
"""
dataset = datasets.fetch_20newsgroups()
return Dataset(load_newsgroups.__doc__, np.array(dataset.data), dataset.target,
accuracy_score, stratify=True)