本文整理匯總了Python中sklearn.covariance.MinCovDet方法的典型用法代碼示例。如果您正苦於以下問題:Python covariance.MinCovDet方法的具體用法?Python covariance.MinCovDet怎麽用?Python covariance.MinCovDet使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類sklearn.covariance
的用法示例。
在下文中一共展示了covariance.MinCovDet方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _h_getMahalanobisRobust
# 需要導入模塊: from sklearn import covariance [as 別名]
# 或者: from sklearn.covariance import MinCovDet [as 別名]
def _h_getMahalanobisRobust(dat, critical_alpha=0.01, good_rows=np.zeros(0)):
'''Calculate the Mahalanobis distance from the sample vector.'''
if good_rows.size == 0:
good_rows = np.any(~np.isnan(dat), axis=1)
try:
dat2fit = dat[good_rows]
assert not np.any(np.isnan(dat2fit))
robust_cov = MinCovDet().fit(dat2fit)
mahalanobis_dist = np.sqrt(robust_cov.mahalanobis(dat))
except ValueError:
# this step will fail if the covariance matrix is not singular. This happens if the data is not
# a unimodal symetric distribution. For example there is too many small noisy particles. Therefore
# I will take a safe option and return zeros in the mahalanobis
# distance if this is the case.
mahalanobis_dist = np.zeros(dat.shape[0])
# critial distance of the maholanobis distance using the chi-square distirbution
# https://en.wikiversity.org/wiki/Mahalanobis%27_distance
# http://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.chi2.html
maha_lim = chi2.ppf(1 - critical_alpha, dat.shape[1])
outliers = mahalanobis_dist > maha_lim
return mahalanobis_dist, outliers, maha_lim
示例2: fit
# 需要導入模塊: from sklearn import covariance [as 別名]
# 或者: from sklearn.covariance import MinCovDet [as 別名]
def fit(self, X, y=None):
"""Fit detector. y is ignored in unsupervised methods.
Parameters
----------
X : numpy array of shape (n_samples, n_features)
The input samples.
y : Ignored
Not used, present for API consistency by convention.
Returns
-------
self : object
Fitted estimator.
"""
# Validate inputs X and y (optional)
X = check_array(X)
self._set_n_classes(y)
self.detector_ = MinCovDet(store_precision=self.store_precision,
assume_centered=self.assume_centered,
support_fraction=self.support_fraction,
random_state=self.random_state)
self.detector_.fit(X=X, y=y)
# Use mahalanabis distance as the outlier score
self.decision_scores_ = self.detector_.dist_
self._process_decision_scores()
return self
示例3: raw_location_
# 需要導入模塊: from sklearn import covariance [as 別名]
# 或者: from sklearn.covariance import MinCovDet [as 別名]
def raw_location_(self):
"""The raw robust estimated location before correction and
re-weighting.
Decorator for scikit-learn MinCovDet attributes.
"""
return self.detector_.raw_location_
示例4: raw_covariance_
# 需要導入模塊: from sklearn import covariance [as 別名]
# 或者: from sklearn.covariance import MinCovDet [as 別名]
def raw_covariance_(self):
"""The raw robust estimated location before correction and
re-weighting.
Decorator for scikit-learn MinCovDet attributes.
"""
return self.detector_.raw_covariance_
示例5: raw_support_
# 需要導入模塊: from sklearn import covariance [as 別名]
# 或者: from sklearn.covariance import MinCovDet [as 別名]
def raw_support_(self):
"""A mask of the observations that have been used to compute
the raw robust estimates of location and shape, before correction
and re-weighting.
Decorator for scikit-learn MinCovDet attributes.
"""
return self.detector_.raw_support_
示例6: location_
# 需要導入模塊: from sklearn import covariance [as 別名]
# 或者: from sklearn.covariance import MinCovDet [as 別名]
def location_(self):
"""Estimated robust location.
Decorator for scikit-learn MinCovDet attributes.
"""
return self.detector_.location_
示例7: precision_
# 需要導入模塊: from sklearn import covariance [as 別名]
# 或者: from sklearn.covariance import MinCovDet [as 別名]
def precision_(self):
""" Estimated pseudo inverse matrix.
(stored only if store_precision is True)
Decorator for scikit-learn MinCovDet attributes.
"""
return self.detector_.precision_
示例8: support_
# 需要導入模塊: from sklearn import covariance [as 別名]
# 或者: from sklearn.covariance import MinCovDet [as 別名]
def support_(self):
"""A mask of the observations that have been used to compute
the robust estimates of location and shape.
Decorator for scikit-learn MinCovDet attributes.
"""
return self.detector_.support_
示例9: test_mcd_class_on_invalid_input
# 需要導入模塊: from sklearn import covariance [as 別名]
# 或者: from sklearn.covariance import MinCovDet [as 別名]
def test_mcd_class_on_invalid_input():
X = np.arange(100)
mcd = MinCovDet()
assert_raise_message(ValueError, 'Expected 2D array, got 1D array instead',
mcd.fit, X)
示例10: launch_mcd_on_dataset
# 需要導入模塊: from sklearn import covariance [as 別名]
# 或者: from sklearn.covariance import MinCovDet [as 別名]
def launch_mcd_on_dataset(n_samples, n_features, n_outliers, tol_loc, tol_cov,
tol_support):
rand_gen = np.random.RandomState(0)
data = rand_gen.randn(n_samples, n_features)
# add some outliers
outliers_index = rand_gen.permutation(n_samples)[:n_outliers]
outliers_offset = 10. * \
(rand_gen.randint(2, size=(n_outliers, n_features)) - 0.5)
data[outliers_index] += outliers_offset
inliers_mask = np.ones(n_samples).astype(bool)
inliers_mask[outliers_index] = False
pure_data = data[inliers_mask]
# compute MCD by fitting an object
mcd_fit = MinCovDet(random_state=rand_gen).fit(data)
T = mcd_fit.location_
S = mcd_fit.covariance_
H = mcd_fit.support_
# compare with the estimates learnt from the inliers
error_location = np.mean((pure_data.mean(0) - T) ** 2)
assert(error_location < tol_loc)
error_cov = np.mean((empirical_covariance(pure_data) - S) ** 2)
assert(error_cov < tol_cov)
assert(np.sum(H) >= tol_support)
assert_array_almost_equal(mcd_fit.mahalanobis(data), mcd_fit.dist_)
示例11: test_mcd_issue1127
# 需要導入模塊: from sklearn import covariance [as 別名]
# 或者: from sklearn.covariance import MinCovDet [as 別名]
def test_mcd_issue1127():
# Check that the code does not break with X.shape = (3, 1)
# (i.e. n_support = n_samples)
rnd = np.random.RandomState(0)
X = rnd.normal(size=(3, 1))
mcd = MinCovDet()
mcd.fit(X)
示例12: test_mcd_issue3367
# 需要導入模塊: from sklearn import covariance [as 別名]
# 或者: from sklearn.covariance import MinCovDet [as 別名]
def test_mcd_issue3367():
# Check that MCD completes when the covariance matrix is singular
# i.e. one of the rows and columns are all zeros
rand_gen = np.random.RandomState(0)
# Think of these as the values for X and Y -> 10 values between -5 and 5
data_values = np.linspace(-5, 5, 10).tolist()
# Get the cartesian product of all possible coordinate pairs from above set
data = np.array(list(itertools.product(data_values, data_values)))
# Add a third column that's all zeros to make our data a set of point
# within a plane, which means that the covariance matrix will be singular
data = np.hstack((data, np.zeros((data.shape[0], 1))))
# The below line of code should raise an exception if the covariance matrix
# is singular. As a further test, since we have points in XYZ, the
# principle components (Eigenvectors) of these directly relate to the
# geometry of the points. Since it's a plane, we should be able to test
# that the Eigenvector that corresponds to the smallest Eigenvalue is the
# plane normal, specifically [0, 0, 1], since everything is in the XY plane
# (as I've set it up above). To do this one would start by:
#
# evals, evecs = np.linalg.eigh(mcd_fit.covariance_)
# normal = evecs[:, np.argmin(evals)]
#
# After which we need to assert that our `normal` is equal to [0, 0, 1].
# Do note that there is floating point error associated with this, so it's
# best to subtract the two and then compare some small tolerance (e.g.
# 1e-12).
MinCovDet(random_state=rand_gen).fit(data)
示例13: test_mcd_support_covariance_is_zero
# 需要導入模塊: from sklearn import covariance [as 別名]
# 或者: from sklearn.covariance import MinCovDet [as 別名]
def test_mcd_support_covariance_is_zero():
# Check that MCD returns a ValueError with informative message when the
# covariance of the support data is equal to 0.
X_1 = np.array([0.5, 0.1, 0.1, 0.1, 0.957, 0.1, 0.1, 0.1, 0.4285, 0.1])
X_1 = X_1.reshape(-1, 1)
X_2 = np.array([0.5, 0.3, 0.3, 0.3, 0.957, 0.3, 0.3, 0.3, 0.4285, 0.3])
X_2 = X_2.reshape(-1, 1)
msg = ('The covariance matrix of the support data is equal to 0, try to '
'increase support_fraction')
for X in [X_1, X_2]:
assert_raise_message(ValueError, msg, MinCovDet().fit, X)
示例14: compute_MCD_weft
# 需要導入模塊: from sklearn import covariance [as 別名]
# 或者: from sklearn.covariance import MinCovDet [as 別名]
def compute_MCD_weft(weftsPickled, target_path):
weft_points_list = floatPointList()
for pickled_path in weftsPickled:
weft_points_list.extend(pickle.load(open(pickled_path, "rb" )))
x_vals = [fp.x for fp in weft_points_list]
y_vals = [fp.y for fp in weft_points_list]
mean_hor_dist = weft_points_list.getMedianWeftDist()
min_x = min(x_vals) + 1.5 * mean_hor_dist
max_x = max(x_vals) - 1.5 * mean_hor_dist
min_y = min(y_vals) + 1.5 * mean_hor_dist
max_y = max(y_vals) - 1.5 * mean_hor_dist
inner_points = floatPointList()
for pt in weft_points_list:
if min_x < pt.x < max_x and min_y < pt.y < max_y:
inner_points.append(pt)
X = np.zeros([len(inner_points), 3])
for idx, pt in enumerate(inner_points):
X[idx,0] = pt.area
X[idx,1] = pt.right_dist
X[idx,2] = pt.left_dist
Y = X[~(X<=0).any(axis=1)]
robust_cov = MinCovDet(support_fraction=0.8).fit(Y)
pickle.dump(robust_cov, open(target_path, "wb"))
示例15: compute_MCD_warp
# 需要導入模塊: from sklearn import covariance [as 別名]
# 或者: from sklearn.covariance import MinCovDet [as 別名]
def compute_MCD_warp(warpsPickled, target_path):
warp_points_list = floatPointList()
for pickled_path in warpsPickled:
warp_points_list.extend(pickle.load(open(pickled_path, "rb" )))
x_vals = [fp.x for fp in warp_points_list]
y_vals = [fp.y for fp in warp_points_list]
mean_ver_dist = warp_points_list.getMedianWarpDist()
min_x = min(x_vals) + 1.5 * mean_ver_dist
max_x = max(x_vals) - 1.5 * mean_ver_dist
min_y = min(y_vals) + 1.5 * mean_ver_dist
max_y = max(y_vals) - 1.5 * mean_ver_dist
inner_points = floatPointList()
for pt in warp_points_list:
if min_x < pt.x < max_x and min_y < pt.y < max_y:
inner_points.append(pt)
#####CHANGED
#print("attention, only 2D!!!!!")
X = np.zeros([len(inner_points), 3])
for idx, pt in enumerate(inner_points):
X[idx,0] = pt.area
X[idx,1] = pt.lower_dist
X[idx,2] = pt.upper_dist
Y = X[~(X<=0).any(axis=1)]
robust_cov = MinCovDet(support_fraction=0.8).fit(Y)
pickle.dump(robust_cov, open(target_path, "wb"))