當前位置: 首頁>>代碼示例>>Python>>正文


Python cluster.estimate_bandwidth方法代碼示例

本文整理匯總了Python中sklearn.cluster.estimate_bandwidth方法的典型用法代碼示例。如果您正苦於以下問題:Python cluster.estimate_bandwidth方法的具體用法?Python cluster.estimate_bandwidth怎麽用?Python cluster.estimate_bandwidth使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在sklearn.cluster的用法示例。


在下文中一共展示了cluster.estimate_bandwidth方法的10個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: findClusters_meanShift

# 需要導入模塊: from sklearn import cluster [as 別名]
# 或者: from sklearn.cluster import estimate_bandwidth [as 別名]
def findClusters_meanShift(data):
    '''
        Cluster data using Mean Shift method
    '''
    bandwidth = cl.estimate_bandwidth(data, 
        quantile=0.25, n_samples=500)

    # create the classifier object
    meanShift = cl.MeanShift(
        bandwidth=bandwidth,
        bin_seeding=True
    )

    # fit the data
    return meanShift.fit(data)

# the file name of the dataset 
開發者ID:drabastomek,項目名稱:practicalDataAnalysisCookbook,代碼行數:19,代碼來源:clustering_meanShift.py

示例2: get_typical_durations

# 需要導入模塊: from sklearn import cluster [as 別名]
# 或者: from sklearn.cluster import estimate_bandwidth [as 別名]
def get_typical_durations(raw_durations, bandwidth_percentile=0.05, 
                       min_intersection=0.5, miss_covered=0.1):
    """Return typical durations in a dataset."""
    dur = (raw_durations).reshape(raw_durations.shape[0], 1)
    bandwidth = estimate_bandwidth(dur, quantile=bandwidth_percentile)
    ms = MeanShift(bandwidth=bandwidth, bin_seeding=False)
    ms.fit(dur.reshape((dur.shape[0]), 1))
    tw = np.sort(np.array(
        ms.cluster_centers_.reshape(ms.cluster_centers_.shape[0]), dtype=int))
    # Warranty a min intersection in the output durations.
    p = np.zeros((dur.shape[0], tw.shape[0]))
    for idx in range(tw.shape[0]):
        p[:, idx] = (dur/tw[idx]).reshape(p[:,idx].shape[0])
    ll = (p>=min_intersection) & (p<=1.0/min_intersection)
    if (ll.sum(axis=1)>0).sum() / float(raw_durations.shape[0]) < (1.0-miss_covered):
        assert False, "Condition of minimum intersection not satisfied"
    return tw 
開發者ID:cabaf,項目名稱:sparseprop,代碼行數:19,代碼來源:utils.py

示例3: loop_estimate_bandwidth

# 需要導入模塊: from sklearn import cluster [as 別名]
# 或者: from sklearn.cluster import estimate_bandwidth [as 別名]
def loop_estimate_bandwidth():
        len_ = 4
        while  len_ < self.sdc_all_speech.shape[0]:
            logging.info((len_,
                          estimate_bandwidth(self.sdc_all_speech[:len_])))
            len_ *= 2 
開發者ID:hlt-bme-hu,項目名稱:hunspeech,代碼行數:8,代碼來源:shifted_delta_cepstra.py

示例4: test_estimate_bandwidth

# 需要導入模塊: from sklearn import cluster [as 別名]
# 或者: from sklearn.cluster import estimate_bandwidth [as 別名]
def test_estimate_bandwidth():
    # Test estimate_bandwidth
    bandwidth = estimate_bandwidth(X, n_samples=200)
    assert 0.9 <= bandwidth <= 1.5 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:6,代碼來源:test_mean_shift.py

示例5: test_estimate_bandwidth_1sample

# 需要導入模塊: from sklearn import cluster [as 別名]
# 或者: from sklearn.cluster import estimate_bandwidth [as 別名]
def test_estimate_bandwidth_1sample():
    # Test estimate_bandwidth when n_samples=1 and quantile<1, so that
    # n_neighbors is set to 1.
    bandwidth = estimate_bandwidth(X, n_samples=1, quantile=0.3)
    assert bandwidth == 0. 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:7,代碼來源:test_mean_shift.py

示例6: test_estimate_bandwidth_with_sparse_matrix

# 需要導入模塊: from sklearn import cluster [as 別名]
# 或者: from sklearn.cluster import estimate_bandwidth [as 別名]
def test_estimate_bandwidth_with_sparse_matrix():
    # Test estimate_bandwidth with sparse matrix
    X = sparse.lil_matrix((1000, 1000))
    msg = "A sparse matrix was passed, but dense data is required."
    assert_raise_message(TypeError, msg, estimate_bandwidth, X, 200) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:7,代碼來源:test_mean_shift.py

示例7: main

# 需要導入模塊: from sklearn import cluster [as 別名]
# 或者: from sklearn.cluster import estimate_bandwidth [as 別名]
def main(filename):
	# read csv files with daily data per tick
    df = pandas.read_csv(filename, parse_dates=[0], index_col=0, names=['Date_Time', 'Buy', 'Sell'],
                         date_parser=lambda x: pandas.to_datetime(x, format="%d/%m/%y %H:%M:%S"))

    # group by day and drop NA values (usually weekends)
    grouped_data = df.dropna()
    ticks_data = grouped_data['Sell'].resample('24H').ohlc()
    
    # use 'ask'
    sell_data = grouped_data.as_matrix(columns=['Sell'])

    # calculate bandwidth (expirement with quantile and samples)
    bandwidth = estimate_bandwidth(sell_data, quantile=0.1, n_samples=100)
    ms = MeanShift(bandwidth=bandwidth, bin_seeding=True)

    # fit the data
    ms.fit(sell_data)

    ml_results = []
    for k in range(len(np.unique(ms.labels_))):
        my_members = ms.labels_ == k
        values = sell_data[my_members, 0]    

        # find the edges
        ml_results.append(min(values))
        ml_results.append(max(values))

    # export the data for the visualizations
    ticks_data.to_json('ticks.json', date_format='iso', orient='index')

    # export ml support resisistance
    with open('ml_results.json', 'w') as f:
        f.write(json.dumps(ml_results))
    

    print("Done. Goto 0.0.0.0:8000/chart.html") 
開發者ID:jonromero,項目名稱:forex_algotrading,代碼行數:39,代碼來源:ml.py

示例8: test_estimate_bandwidth

# 需要導入模塊: from sklearn import cluster [as 別名]
# 或者: from sklearn.cluster import estimate_bandwidth [as 別名]
def test_estimate_bandwidth(self):
        iris = datasets.load_iris()
        df = pdml.ModelFrame(iris)

        result = df.cluster.estimate_bandwidth(random_state=self.random_state)
        expected = cluster.estimate_bandwidth(iris.data, random_state=self.random_state)
        self.assertEqual(result, expected) 
開發者ID:pandas-ml,項目名稱:pandas-ml,代碼行數:9,代碼來源:test_cluster.py

示例9: identify_velocity_speed_ratios_v3

# 需要導入模塊: from sklearn import cluster [as 別名]
# 或者: from sklearn.cluster import estimate_bandwidth [as 別名]
def identify_velocity_speed_ratios_v3(
        engine_speeds_out, velocities, idle_engine_speed, stop_velocity):
    """
    Identifies velocity speed ratios from gear box speed vector [km/(h*RPM)].

    :param engine_speeds_out:
        Engine speed [RPM].
    :type engine_speeds_out: numpy.array

    :param velocities:
        Velocity vector [km/h].
    :type velocities: numpy.array

    :param idle_engine_speed:
        Engine speed idle median and std [RPM].
    :type idle_engine_speed: (float, float)

    :param stop_velocity:
        Maximum velocity to consider the vehicle stopped [km/h].
    :type stop_velocity: float

    :return:
        Constant velocity speed ratios of the gear box [km/(h*RPM)].
    :rtype: dict
    """
    import sklearn.cluster as sk_clu

    idle_speed = idle_engine_speed[0] + idle_engine_speed[1]

    b = (engine_speeds_out > idle_speed) & (velocities > stop_velocity)
    x = (velocities[b] / engine_speeds_out[b])[:, None]

    bandwidth = sk_clu.estimate_bandwidth(x, quantile=0.2)
    ms = sk_clu.MeanShift(bandwidth=bandwidth, bin_seeding=True)
    ms.fit(x)

    vsr = {k + 1: v for k, v in enumerate(sorted(ms.cluster_centers_[:, 0]))}

    vsr[0] = 0.0

    return vsr 
開發者ID:JRCSTU,項目名稱:CO2MPAS-TA,代碼行數:43,代碼來源:mechanical.py

示例10: test_estimate_bandwidth

# 需要導入模塊: from sklearn import cluster [as 別名]
# 或者: from sklearn.cluster import estimate_bandwidth [as 別名]
def test_estimate_bandwidth():
    # Test estimate_bandwidth
    bandwidth = estimate_bandwidth(X, n_samples=200)
    assert_true(0.9 <= bandwidth <= 1.5) 
開發者ID:alvarobartt,項目名稱:twitter-stock-recommendation,代碼行數:6,代碼來源:test_mean_shift.py


注:本文中的sklearn.cluster.estimate_bandwidth方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。