當前位置: 首頁>>代碼示例>>Python>>正文


Python cluster.FeatureAgglomeration方法代碼示例

本文整理匯總了Python中sklearn.cluster.FeatureAgglomeration方法的典型用法代碼示例。如果您正苦於以下問題:Python cluster.FeatureAgglomeration方法的具體用法?Python cluster.FeatureAgglomeration怎麽用?Python cluster.FeatureAgglomeration使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在sklearn.cluster的用法示例。


在下文中一共展示了cluster.FeatureAgglomeration方法的5個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_linkage_misc

# 需要導入模塊: from sklearn import cluster [as 別名]
# 或者: from sklearn.cluster import FeatureAgglomeration [as 別名]
def test_linkage_misc():
    # Misc tests on linkage
    rng = np.random.RandomState(42)
    X = rng.normal(size=(5, 5))
    assert_raises(ValueError, AgglomerativeClustering(linkage='foo').fit, X)
    assert_raises(ValueError, linkage_tree, X, linkage='foo')
    assert_raises(ValueError, linkage_tree, X, connectivity=np.ones((4, 4)))

    # Smoke test FeatureAgglomeration
    FeatureAgglomeration().fit(X)

    # test hierarchical clustering on a precomputed distances matrix
    dis = cosine_distances(X)

    res = linkage_tree(dis, affinity="precomputed")
    assert_array_equal(res[0], linkage_tree(X, affinity="cosine")[0])

    # test hierarchical clustering on a precomputed distances matrix
    res = linkage_tree(X, affinity=manhattan_distances)
    assert_array_equal(res[0], linkage_tree(X, affinity="manhattan")[0]) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:22,代碼來源:test_hierarchical.py

示例2: test_ward_agglomeration

# 需要導入模塊: from sklearn import cluster [as 別名]
# 或者: from sklearn.cluster import FeatureAgglomeration [as 別名]
def test_ward_agglomeration():
    # Check that we obtain the correct solution in a simplistic case
    rng = np.random.RandomState(0)
    mask = np.ones([10, 10], dtype=np.bool)
    X = rng.randn(50, 100)
    connectivity = grid_to_graph(*mask.shape)
    agglo = FeatureAgglomeration(n_clusters=5, connectivity=connectivity)
    agglo.fit(X)
    assert np.size(np.unique(agglo.labels_)) == 5

    X_red = agglo.transform(X)
    assert X_red.shape[1] == 5
    X_full = agglo.inverse_transform(X_red)
    assert np.unique(X_full[0]).size == 5
    assert_array_almost_equal(agglo.transform(X_full), X_red)

    # Check that fitting with no samples raises a ValueError
    assert_raises(ValueError, agglo.fit, X[:0]) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:20,代碼來源:test_hierarchical.py

示例3: test_objectmapper

# 需要導入模塊: from sklearn import cluster [as 別名]
# 或者: from sklearn.cluster import FeatureAgglomeration [as 別名]
def test_objectmapper(self):
        df = pdml.ModelFrame([])
        self.assertIs(df.cluster.AffinityPropagation, cluster.AffinityPropagation)
        self.assertIs(df.cluster.AgglomerativeClustering, cluster.AgglomerativeClustering)
        self.assertIs(df.cluster.Birch, cluster.Birch)
        self.assertIs(df.cluster.DBSCAN, cluster.DBSCAN)
        self.assertIs(df.cluster.FeatureAgglomeration, cluster.FeatureAgglomeration)
        self.assertIs(df.cluster.KMeans, cluster.KMeans)
        self.assertIs(df.cluster.MiniBatchKMeans, cluster.MiniBatchKMeans)
        self.assertIs(df.cluster.MeanShift, cluster.MeanShift)
        self.assertIs(df.cluster.SpectralClustering, cluster.SpectralClustering)

        self.assertIs(df.cluster.bicluster.SpectralBiclustering,
                      cluster.bicluster.SpectralBiclustering)
        self.assertIs(df.cluster.bicluster.SpectralCoclustering,
                      cluster.bicluster.SpectralCoclustering) 
開發者ID:pandas-ml,項目名稱:pandas-ml,代碼行數:18,代碼來源:test_cluster.py

示例4: test_ward_agglomeration

# 需要導入模塊: from sklearn import cluster [as 別名]
# 或者: from sklearn.cluster import FeatureAgglomeration [as 別名]
def test_ward_agglomeration():
    # Check that we obtain the correct solution in a simplistic case
    rng = np.random.RandomState(0)
    mask = np.ones([10, 10], dtype=np.bool)
    X = rng.randn(50, 100)
    connectivity = grid_to_graph(*mask.shape)
    agglo = FeatureAgglomeration(n_clusters=5, connectivity=connectivity)
    agglo.fit(X)
    assert_true(np.size(np.unique(agglo.labels_)) == 5)

    X_red = agglo.transform(X)
    assert_true(X_red.shape[1] == 5)
    X_full = agglo.inverse_transform(X_red)
    assert_true(np.unique(X_full[0]).size == 5)
    assert_array_almost_equal(agglo.transform(X_full), X_red)

    # Check that fitting with no samples raises a ValueError
    assert_raises(ValueError, agglo.fit, X[:0]) 
開發者ID:alvarobartt,項目名稱:twitter-stock-recommendation,代碼行數:20,代碼來源:test_hierarchical.py

示例5: test_feature_agglomeration

# 需要導入模塊: from sklearn import cluster [as 別名]
# 或者: from sklearn.cluster import FeatureAgglomeration [as 別名]
def test_feature_agglomeration():
    n_clusters = 1
    X = np.array([0, 0, 1]).reshape(1, 3)  # (n_samples, n_features)

    agglo_mean = FeatureAgglomeration(n_clusters=n_clusters,
                                      pooling_func=np.mean)
    agglo_median = FeatureAgglomeration(n_clusters=n_clusters,
                                        pooling_func=np.median)
    assert_no_warnings(agglo_mean.fit, X)
    assert_no_warnings(agglo_median.fit, X)
    assert np.size(np.unique(agglo_mean.labels_)) == n_clusters
    assert np.size(np.unique(agglo_median.labels_)) == n_clusters
    assert np.size(agglo_mean.labels_) == X.shape[1]
    assert np.size(agglo_median.labels_) == X.shape[1]

    # Test transform
    Xt_mean = agglo_mean.transform(X)
    Xt_median = agglo_median.transform(X)
    assert Xt_mean.shape[1] == n_clusters
    assert Xt_median.shape[1] == n_clusters
    assert Xt_mean == np.array([1 / 3.])
    assert Xt_median == np.array([0.])

    # Test inverse transform
    X_full_mean = agglo_mean.inverse_transform(Xt_mean)
    X_full_median = agglo_median.inverse_transform(Xt_median)
    assert np.unique(X_full_mean[0]).size == n_clusters
    assert np.unique(X_full_median[0]).size == n_clusters

    assert_array_almost_equal(agglo_mean.transform(X_full_mean),
                              Xt_mean)
    assert_array_almost_equal(agglo_median.transform(X_full_median),
                              Xt_median) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:35,代碼來源:test_feature_agglomeration.py


注:本文中的sklearn.cluster.FeatureAgglomeration方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。