當前位置: 首頁>>代碼示例>>Python>>正文


Python cluster.Birch方法代碼示例

本文整理匯總了Python中sklearn.cluster.Birch方法的典型用法代碼示例。如果您正苦於以下問題:Python cluster.Birch方法的具體用法?Python cluster.Birch怎麽用?Python cluster.Birch使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在sklearn.cluster的用法示例。


在下文中一共展示了cluster.Birch方法的8個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: GetItemPixels

# 需要導入模塊: from sklearn import cluster [as 別名]
# 或者: from sklearn.cluster import Birch [as 別名]
def GetItemPixels(self, I):
        '''
        Locates items that should be picked up on the screen
        '''
        ws = [8, 14]
        D1 = np.abs(I - np.array([10.8721,  12.8995,  13.9932])).sum(axis = 2) < 15
        D2 = np.abs(I - np.array([118.1302, 116.0938, 106.9063])).sum(axis = 2) < 76
        R1 = view_as_windows(D1, ws, ws).sum(axis = (2, 3))
        R2 = view_as_windows(D2, ws, ws).sum(axis = (2, 3))
        FR = ((R1 + R2 / np.prod(ws)) >= 1.0) & (R1 > 10) & (R2 > 10)
        PL = np.transpose(np.nonzero(FR)) * np.array(ws)
        if len(PL) <= 0:
            return []
        bc = Birch(threshold = 50, n_clusters = None)
        bc.fit(PL)
        return bc.subcluster_centers_ 
開發者ID:nicholastoddsmith,項目名稱:poeai,代碼行數:18,代碼來源:TargetingSystem.py

示例2: findClusters_Birch

# 需要導入模塊: from sklearn import cluster [as 別名]
# 或者: from sklearn.cluster import Birch [as 別名]
def findClusters_Birch(data):
    '''
        Cluster data using BIRCH algorithm
    '''
    # create the classifier object
    birch = cl.Birch(
        branching_factor=100,
        n_clusters=4,
        compute_labels=True,
        copy=True
    )

    # fit the data
    return birch.fit(data)

# the file name of the dataset 
開發者ID:drabastomek,項目名稱:practicalDataAnalysisCookbook,代碼行數:18,代碼來源:clustering_birch.py

示例3: detection_with_birch

# 需要導入模塊: from sklearn import cluster [as 別名]
# 或者: from sklearn.cluster import Birch [as 別名]
def detection_with_birch(image_set):
    """

    :param image_set: The bottleneck values of the relevant images.
    :return: Predictions vector
    """

    # The branching_factor, might be fine tune for better results
    clf = cluster.Birch(n_clusters=2)

    clf.fit(image_set)

    predictions = clf.labels_
    predictions = normalize_predictions(predictions)

    return predictions 
開發者ID:GuillaumeErhard,項目名稱:ImageSetCleaner,代碼行數:18,代碼來源:predicting.py

示例4: test_objectmapper

# 需要導入模塊: from sklearn import cluster [as 別名]
# 或者: from sklearn.cluster import Birch [as 別名]
def test_objectmapper(self):
        df = pdml.ModelFrame([])
        self.assertIs(df.cluster.AffinityPropagation, cluster.AffinityPropagation)
        self.assertIs(df.cluster.AgglomerativeClustering, cluster.AgglomerativeClustering)
        self.assertIs(df.cluster.Birch, cluster.Birch)
        self.assertIs(df.cluster.DBSCAN, cluster.DBSCAN)
        self.assertIs(df.cluster.FeatureAgglomeration, cluster.FeatureAgglomeration)
        self.assertIs(df.cluster.KMeans, cluster.KMeans)
        self.assertIs(df.cluster.MiniBatchKMeans, cluster.MiniBatchKMeans)
        self.assertIs(df.cluster.MeanShift, cluster.MeanShift)
        self.assertIs(df.cluster.SpectralClustering, cluster.SpectralClustering)

        self.assertIs(df.cluster.bicluster.SpectralBiclustering,
                      cluster.bicluster.SpectralBiclustering)
        self.assertIs(df.cluster.bicluster.SpectralCoclustering,
                      cluster.bicluster.SpectralCoclustering) 
開發者ID:pandas-ml,項目名稱:pandas-ml,代碼行數:18,代碼來源:test_cluster.py

示例5: cluster_junctions

# 需要導入模塊: from sklearn import cluster [as 別名]
# 或者: from sklearn.cluster import Birch [as 別名]
def cluster_junctions(juncs):
    birch_model = Birch(threshold=3, n_clusters=None)
    X = np.array(juncs)
    birch_model.fit(X)

    return birch_model.labels_ 
開發者ID:Magdoll,項目名稱:cDNA_Cupcake,代碼行數:8,代碼來源:summarize_sample_GFF_junctions.py

示例6: __init__

# 需要導入模塊: from sklearn import cluster [as 別名]
# 或者: from sklearn.cluster import Birch [as 別名]
def __init__(self, options):
        self.handle_options(options)

        out_params = convert_params(
            options.get('params', {}),
            ints=['k'],
            aliases={'k': 'n_clusters'},
        )

        self.estimator = _Birch(**out_params) 
開發者ID:nccgroup,項目名稱:Splunking-Crime,代碼行數:12,代碼來源:Birch.py

示例7: test_Birch

# 需要導入模塊: from sklearn import cluster [as 別名]
# 或者: from sklearn.cluster import Birch [as 別名]
def test_Birch(self):
        Birch_algo.register_codecs()
        self.clusterer_util(Birch) 
開發者ID:nccgroup,項目名稱:Splunking-Crime,代碼行數:5,代碼來源:test_codec.py

示例8: __init__

# 需要導入模塊: from sklearn import cluster [as 別名]
# 或者: from sklearn.cluster import Birch [as 別名]
def __init__(self, similarity='cosine', decay_window=20, decay_alpha=0.25, clustering='dbscan', tagger='twitter', useful_tags=['Noun', 'Verb', 'Adjective', 'Determiner', 'Adverb', 'Conjunction', 'Josa', 'PreEomi', 'Eomi', 'Suffix', 'Alpha', 'Number'], delimiters=['. ', '\n', '.\n'], min_token_length=2, stopwords=stopwords_ko, no_below_word_count=2, no_above_word_portion=0.85, max_dictionary_size=None, min_cluster_size=2, similarity_threshold=0.85, matrix_smoothing=False, n_clusters=None, compactify=True, **kwargs):
        self.decay_window = decay_window
        self.decay_alpha = decay_alpha
        if similarity == 'cosine':  # very, very slow :(
            self.vectorizer = DictVectorizer()
            self.uniform_sim = self._sim_cosine
        elif similarity == 'jaccard':
            self.uniform_sim = self._sim_jaccard
        elif similarity == 'normalized_cooccurrence':
            self.uniform_sim = self._sim_normalized_cooccurrence
        else:
            raise LexRankError("available similarity functions are: cosine, jaccard, normalized_cooccurrence")
        self.sim = lambda sentence1, sentence2: self.decay(sentence1, sentence2) * self.uniform_sim(sentence1, sentence2)
        self.factory = SentenceFactory(tagger=tagger, useful_tags=useful_tags, delimiters=delimiters, min_token_length=min_token_length, stopwords=stopwords, **kwargs)
        if clustering == 'birch':
            self._birch = Birch(threshold=0.99, n_clusters=n_clusters)
            self._clusterer = lambda matrix: self._birch.fit_predict(1 - matrix)
        elif clustering == 'dbscan':
            self._dbscan = DBSCAN()
            self._clusterer = lambda matrix: self._dbscan.fit_predict(1 - matrix)
        elif clustering == 'affinity':
            self._affinity = AffinityPropagation()
            self._clusterer = lambda matrix: self._affinity.fit_predict(1 - matrix)
        elif clustering is None:
            self._clusterer = lambda matrix: [0 for index in range(matrix.shape[0])]
        else:
            raise LexRankError("available clustering algorithms are: birch, markov, no-clustering(use `None`)")
        self.no_below_word_count = no_below_word_count
        self.no_above_word_portion = no_above_word_portion
        self.max_dictionary_size = max_dictionary_size
        self.similarity_threshold = similarity_threshold
        self.min_cluster_size = min_cluster_size
        self.matrix_smoothing = matrix_smoothing
        self.compactify = compactify 
開發者ID:theeluwin,項目名稱:lexrankr,代碼行數:36,代碼來源:lexrankr.py


注:本文中的sklearn.cluster.Birch方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。