本文整理匯總了Python中sklearn.base.is_classifier方法的典型用法代碼示例。如果您正苦於以下問題:Python base.is_classifier方法的具體用法?Python base.is_classifier怎麽用?Python base.is_classifier使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類sklearn.base
的用法示例。
在下文中一共展示了base.is_classifier方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _validate_estimator
# 需要導入模塊: from sklearn import base [as 別名]
# 或者: from sklearn.base import is_classifier [as 別名]
def _validate_estimator(estimator: BaseEstimator):
"""
Run some checks on the given object to determine if it's an estimator which is
valid for our purposes.
"""
# sklearn has a function that does a lot more intensive checking regarding
# the interface of a candidate Estimator
# (sklearn.utils.estimator_checks.check_estimator), but the function
# doesn't work well for our use case as of version 0.22. It doesn't properly
# detect Pipeline X_types based on the first pipeline component and won't
# test anything that doesn't accept a 2-D numpy array as input. We'll settle
# for lax checks here until sklearn has something that works better for us.
if not is_classifier(estimator):
raise ValueError(
"Estimator must be a classifier according to sklearn.base.is_classifier()"
)
if not hasattr(estimator, "predict_proba"):
raise ValueError(
"Estimator must support the predict_proba() method to fulfill gobbli's "
"interface requirements for a prediction model."
)
示例2: test_submission
# 需要導入模塊: from sklearn import base [as 別名]
# 或者: from sklearn.base import is_classifier [as 別名]
def test_submission(self, estimator_fitted, X):
"""Predict using a fitted estimator.
Parameters
----------
estimator_fitted : estimator object
A fitted scikit-learn estimator.
X : {array-like, sparse matrix, dataframe} of shape \
(n_samples, n_features)
The test data set.
Returns
-------
pred : ndarray of shape (n_samples, n_classes) or (n_samples)
"""
if is_classifier(estimator_fitted):
return estimator_fitted.predict_proba(X)
return estimator_fitted.predict(X)
示例3: __init__
# 需要導入模塊: from sklearn import base [as 別名]
# 或者: from sklearn.base import is_classifier [as 別名]
def __init__(self, models):
"""Proxy class to build an ensemble of models with an API as one
Parameters
----------
models: array
An array of models
"""
self._models = models if len(models) else None
if self._models is not None:
if is_classifier(self._models[0]):
check_type = is_classifier
self._scoring_fun = accuracy_score
elif is_regressor(self._models[0]):
check_type = is_regressor
self._scoring_fun = r2_score
else:
raise ValueError('Expected regressors or classifiers,'
' got %s instead' % type(self._models[0]))
for model in self._models:
if not check_type(model):
raise ValueError('Different types of models found, privide'
' either regressors or classifiers.')
示例4: __init__
# 需要導入模塊: from sklearn import base [as 別名]
# 或者: from sklearn.base import is_classifier [as 別名]
def __init__(self, X, y, criterion, min_samples_split, max_depth,
n_val_sample, random_state):
# make sure max_depth > 1
if max_depth < 2:
raise ValueError("max depth must be > 1")
# check the input arrays, and if it's classification validate the
# target values in y
X, y = check_X_y(X, y, accept_sparse=False, dtype=None, copy=True)
if is_classifier(self):
check_classification_targets(y)
# hyper parameters so we can later inspect attributes of the model
self.min_samples_split = min_samples_split
self.max_depth = max_depth
self.n_val_sample = n_val_sample
self.random_state = random_state
# create the splitting class
random_state = check_random_state(random_state)
self.splitter = RandomSplitter(random_state, criterion, n_val_sample)
# grow the tree depth first
self.tree = self._find_next_split(X, y, 0)
示例5: fit
# 需要導入模塊: from sklearn import base [as 別名]
# 或者: from sklearn.base import is_classifier [as 別名]
def fit(self, X, y, sample_weight=None):
"""Fit a separate classifier for each output variable."""
for _, clf in self.classifiers:
if not hasattr(clf, 'fit'):
raise ValueError('Every base classifier should implement a fit method.')
X, y = check_X_y(X, y, multi_output=True, accept_sparse=True)
if is_classifier(self):
check_classification_targets(y)
if y.ndim == 1:
raise ValueError('Output y must have at least two dimensions for multi-output classification but has only one.')
if sample_weight is not None and any([not has_fit_parameter(clf, 'sample_weight') for _, clf in self.classifiers]):
raise ValueError('One of base classifiers does not support sample weights.')
self.classifiers_ = Parallel(n_jobs=self.n_jobs)(delayed(_fit_estimator)(clf, X, y[:, i], sample_weight)
for i, (_, clf) in zip(range(y.shape[1]), self.classifiers))
return self
示例6: convert_sklearn_grid_search_cv
# 需要導入模塊: from sklearn import base [as 別名]
# 或者: from sklearn.base import is_classifier [as 別名]
def convert_sklearn_grid_search_cv(scope, operator, container):
"""
Converter for scikit-learn's GridSearchCV.
"""
opts = scope.get_options(operator.raw_operator)
grid_search_op = operator.raw_operator
best_estimator = grid_search_op.best_estimator_
op_type = sklearn_operator_name_map[type(best_estimator)]
grid_search_operator = scope.declare_local_operator(op_type)
grid_search_operator.raw_operator = best_estimator
container.add_options(id(best_estimator), opts)
grid_search_operator.inputs = operator.inputs
label_name = scope.declare_local_variable('label')
grid_search_operator.outputs.append(label_name)
if is_classifier(best_estimator):
proba_name = scope.declare_local_variable('probability_tensor',
FloatTensorType())
grid_search_operator.outputs.append(proba_name)
apply_identity(scope, label_name.full_name,
operator.outputs[0].full_name, container)
if is_classifier(best_estimator):
apply_identity(scope, proba_name.full_name,
operator.outputs[1].full_name, container)
示例7: fit
# 需要導入模塊: from sklearn import base [as 別名]
# 或者: from sklearn.base import is_classifier [as 別名]
def fit(self, X, y):
y_labels = self._get_labels(y)
cv = check_cv(self.cv, y_labels, classifier=is_classifier(self.estimator))
self.estimators_ = []
for train, _ in cv.split(X, y_labels):
self.estimators_.append(
clone(self.estimator).fit(X[train], y_labels[train])
)
return self
示例8: transform
# 需要導入模塊: from sklearn import base [as 別名]
# 或者: from sklearn.base import is_classifier [as 別名]
def transform(self, X, y=None):
cv = check_cv(self.cv, y, classifier=is_classifier(self.estimator))
X_prob = np.zeros((X.shape[0], self.n_classes))
X_pred = np.zeros(X.shape[0])
for estimator, (_, test) in zip(self.estimators_, cv.split(X)):
X_prob[test] = estimator.predict_proba(X[test])
X_pred[test] = estimator.predict(X[test])
return np.hstack([X_prob, np.array([X_pred]).T])
示例9: test_is_classifier
# 需要導入模塊: from sklearn import base [as 別名]
# 或者: from sklearn.base import is_classifier [as 別名]
def test_is_classifier():
svc = SVC()
assert is_classifier(svc)
assert is_classifier(GridSearchCV(svc, {'C': [0.1, 1]}))
assert is_classifier(Pipeline([('svc', svc)]))
assert is_classifier(Pipeline(
[('svc_cv', GridSearchCV(svc, {'C': [0.1, 1]}))]))
示例10: test_late_onset_averaging_not_reached
# 需要導入模塊: from sklearn import base [as 別名]
# 或者: from sklearn.base import is_classifier [as 別名]
def test_late_onset_averaging_not_reached(klass):
clf1 = klass(average=600)
clf2 = klass()
for _ in range(100):
if is_classifier(clf1):
clf1.partial_fit(X, Y, classes=np.unique(Y))
clf2.partial_fit(X, Y, classes=np.unique(Y))
else:
clf1.partial_fit(X, Y)
clf2.partial_fit(X, Y)
assert_array_almost_equal(clf1.coef_, clf2.coef_, decimal=16)
assert_almost_equal(clf1.intercept_, clf2.intercept_, decimal=16)
示例11: test_validation_set_not_used_for_training
# 需要導入模塊: from sklearn import base [as 別名]
# 或者: from sklearn.base import is_classifier [as 別名]
def test_validation_set_not_used_for_training(klass):
X, Y = iris.data, iris.target
validation_fraction = 0.4
seed = 42
shuffle = False
max_iter = 10
clf1 = klass(early_stopping=True,
random_state=np.random.RandomState(seed),
validation_fraction=validation_fraction,
learning_rate='constant', eta0=0.01,
tol=None, max_iter=max_iter, shuffle=shuffle)
clf1.fit(X, Y)
assert clf1.n_iter_ == max_iter
clf2 = klass(early_stopping=False,
random_state=np.random.RandomState(seed),
learning_rate='constant', eta0=0.01,
tol=None, max_iter=max_iter, shuffle=shuffle)
if is_classifier(clf2):
cv = StratifiedShuffleSplit(test_size=validation_fraction,
random_state=seed)
else:
cv = ShuffleSplit(test_size=validation_fraction,
random_state=seed)
idx_train, idx_val = next(cv.split(X, Y))
idx_train = np.sort(idx_train) # remove shuffling
clf2.fit(X[idx_train], Y[idx_train])
assert clf2.n_iter_ == max_iter
assert_array_equal(clf1.coef_, clf2.coef_)
示例12: fit
# 需要導入模塊: from sklearn import base [as 別名]
# 或者: from sklearn.base import is_classifier [as 別名]
def fit(self, X, y=None, groups=None, **fit_params):
"""
Run fit method with all sets of parameters
Args
----
X : array-like, shape = [n_samples, n_features]
Training vector, where n_samples is the number of samples and
n_features is the number of features
y : array-like, shape = [n_samples] or [n_samples, n_output], optional
Target relative to X for classification or regression;
None for unsupervised learning
groups : array-like, shape = [n_samples], optional
Training vector groups for cross-validation
**fit_params : dict of string -> object
Parameters passed to the ``fit`` method of the estimator
"""
# check estimator and cv methods are valid
self.cv = check_cv(self.cv, y, classifier=is_classifier(self.estimator))
# check for binary response
if len(np.unique(y)) > 2:
raise ValueError('Only a binary response vector is currently supported')
# check that scoring metric has been specified
if self.scoring is None:
raise ValueError('No score function is defined')
# perform cross validation prediction
self.y_pred_ = cross_val_predict(
estimator=self.estimator, X=X, y=y, groups=groups, cv=self.cv,
method='predict_proba', n_jobs=self.n_jobs, **fit_params)
self.y_true = y
# add fold id to the predictions
self.test_idx_ = [indexes[1] for indexes in self.cv.split(X, y, groups)]
示例13: cross_val_score
# 需要導入模塊: from sklearn import base [as 別名]
# 或者: from sklearn.base import is_classifier [as 別名]
def cross_val_score(
estimator,
X,
y=None,
groups=None,
scoring=None,
cv=None,
n_jobs=1,
verbose=0,
fit_params=None,
pre_dispatch="2*n_jobs",
):
"""
Evaluate a score by cross-validation
"""
if not isinstance(scoring, (list, tuple)):
scoring = [scoring]
X, y, groups = indexable(X, y, groups)
cv = check_cv(cv, y, classifier=is_classifier(estimator))
splits = list(cv.split(X, y, groups))
scorer = [check_scoring(estimator, scoring=s) for s in scoring]
# We clone the estimator to make sure that all the folds are
# independent, and that it is pickle-able.
parallel = Parallel(n_jobs=n_jobs, verbose=verbose, pre_dispatch=pre_dispatch)
scores = parallel(
delayed(_fit_and_score)(
clone(estimator), X, y, scorer, train, test, verbose, None, fit_params
)
for train, test in splits
)
group_order = []
if hasattr(cv, "groups"):
group_order = [np.array(cv.groups)[test].tolist()[0] for _, test in splits]
return np.squeeze(np.array(scores)), group_order
示例14: test_is_classifier
# 需要導入模塊: from sklearn import base [as 別名]
# 或者: from sklearn.base import is_classifier [as 別名]
def test_is_classifier():
svc = SVC()
assert_true(is_classifier(svc))
assert_true(is_classifier(GridSearchCV(svc, {'C': [0.1, 1]})))
assert_true(is_classifier(Pipeline([('svc', svc)])))
assert_true(is_classifier(Pipeline(
[('svc_cv', GridSearchCV(svc, {'C': [0.1, 1]}))])))
示例15: test_precision
# 需要導入模塊: from sklearn import base [as 別名]
# 或者: from sklearn.base import is_classifier [as 別名]
def test_precision():
rng_reg = RandomState(2)
rng_clf = RandomState(8)
for X, y, clf in zip(
(rng_reg.random_sample((5, 2)),
rng_clf.random_sample((1000, 4))),
(rng_reg.random_sample((5, )),
rng_clf.randint(2, size=(1000, ))),
(DecisionTreeRegressor(criterion="friedman_mse", random_state=0,
max_depth=1),
DecisionTreeClassifier(max_depth=1, random_state=0))):
clf.fit(X, y)
for precision in (4, 3):
dot_data = export_graphviz(clf, out_file=None, precision=precision,
proportion=True)
# With the current random state, the impurity and the threshold
# will have the number of precision set in the export_graphviz
# function. We will check the number of precision with a strict
# equality. The value reported will have only 2 precision and
# therefore, only a less equal comparison will be done.
# check value
for finding in finditer(r"value = \d+\.\d+", dot_data):
assert_less_equal(
len(search(r"\.\d+", finding.group()).group()),
precision + 1)
# check impurity
if is_classifier(clf):
pattern = r"gini = \d+\.\d+"
else:
pattern = r"friedman_mse = \d+\.\d+"
# check impurity
for finding in finditer(pattern, dot_data):
assert_equal(len(search(r"\.\d+", finding.group()).group()),
precision + 1)
# check threshold
for finding in finditer(r"<= \d+\.\d+", dot_data):
assert_equal(len(search(r"\.\d+", finding.group()).group()),
precision + 1)