本文整理匯總了Python中sklearn.base.RegressorMixin方法的典型用法代碼示例。如果您正苦於以下問題:Python base.RegressorMixin方法的具體用法?Python base.RegressorMixin怎麽用?Python base.RegressorMixin使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類sklearn.base
的用法示例。
在下文中一共展示了base.RegressorMixin方法的9個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _tested_estimators
# 需要導入模塊: from sklearn import base [as 別名]
# 或者: from sklearn.base import RegressorMixin [as 別名]
def _tested_estimators():
for name, Estimator in all_estimators():
if issubclass(Estimator, BiclusterMixin):
continue
if name.startswith("_"):
continue
# FIXME _skip_test should be used here (if we could)
required_parameters = getattr(Estimator, "_required_parameters", [])
if len(required_parameters):
if required_parameters in (["estimator"], ["base_estimator"]):
if issubclass(Estimator, RegressorMixin):
estimator = Estimator(Ridge())
else:
estimator = Estimator(LinearDiscriminantAnalysis())
else:
warnings.warn("Can't instantiate estimator {} which requires "
"parameters {}".format(name,
required_parameters),
SkipTestWarning)
continue
else:
estimator = Estimator()
yield name, estimator
示例2: _generate_bases_test
# 需要導入模塊: from sklearn import base [as 別名]
# 或者: from sklearn.base import RegressorMixin [as 別名]
def _generate_bases_test(est, pd_est):
def test(self):
self.assertTrue(isinstance(pd_est, FrameMixin), pd_est)
self.assertFalse(isinstance(est, FrameMixin))
self.assertTrue(isinstance(pd_est, base.BaseEstimator))
try:
mixins = [
base.ClassifierMixin,
base.ClusterMixin,
base.BiclusterMixin,
base.TransformerMixin,
base.DensityMixin,
base.MetaEstimatorMixin,
base.ClassifierMixin,
base.RegressorMixin]
except:
if _sklearn_ver > 17:
raise
mixins = [
base.ClassifierMixin,
base.ClusterMixin,
base.BiclusterMixin,
base.TransformerMixin,
base.MetaEstimatorMixin,
base.ClassifierMixin,
base.RegressorMixin]
for mixin in mixins:
self.assertEqual(
isinstance(pd_est, mixin),
isinstance(est, mixin),
mixin)
return test
示例3: __init__
# 需要導入模塊: from sklearn import base [as 別名]
# 或者: from sklearn.base import RegressorMixin [as 別名]
def __init__(self,
base_estimator: RegressorMixin = None,
**kwargs):
if base_estimator is not None:
self.base_estimator = clone(base_estimator)
else:
base_estimator = LinearRegression()
self.base_estimator = base_estimator
super().__init__(**kwargs)
示例4: verify
# 需要導入模塊: from sklearn import base [as 別名]
# 或者: from sklearn.base import RegressorMixin [as 別名]
def verify(self, X, predict_params = {}, predict_proba_params = {}, precision = 1e-13, zeroThreshold = 1e-13):
active_fields = _get_column_names(X)
if self.active_fields is None or active_fields is None:
raise ValueError("Cannot perform model validation with anonymous data")
if self.active_fields.tolist() != active_fields.tolist():
raise ValueError("The columns between training data {} and verification data {} do not match".format(self.active_fields, active_fields))
active_values = _get_values(X)
y = self.predict(X, **predict_params)
target_values = _get_values(y)
estimator = self._final_estimator
if isinstance(estimator, BaseEstimator):
if isinstance(estimator, RegressorMixin):
self.verification = _Verification(active_values, target_values, precision, zeroThreshold)
elif isinstance(estimator, ClassifierMixin):
self.verification = _Verification(active_values, target_values, precision, zeroThreshold)
if hasattr(estimator, "predict_proba"):
try:
y_proba = self.predict_proba(X, **predict_proba_params)
self.verification.probability_values = _get_values(y_proba)
except AttributeError:
pass
# elif isinstance(estimator, H2OEstimator):
elif hasattr(estimator, "_estimator_type") and hasattr(estimator, "download_mojo"):
if estimator._estimator_type == "regressor":
self.verification = _Verification(active_values, target_values, precision, zeroThreshold)
elif estimator._estimator_type == "classifier":
probability_values = target_values[:, 1:]
target_values = target_values[:, 0]
self.verification = _Verification(active_values, target_values, precision, zeroThreshold)
self.verification.probability_values = probability_values
示例5: plot_graphviz_tree
# 需要導入模塊: from sklearn import base [as 別名]
# 或者: from sklearn.base import RegressorMixin [as 別名]
def plot_graphviz_tree(self, **kwargs):
"""
被裝飾器entry_wrapper(support=(EMLFitType.E_FIT_CLF, EMLFitType.E_FIT_REG))裝飾,
即支持有監督學習回歸和分類,繪製決策樹或者core基於樹的分類回歸算法的決策示意圖繪製,查看
學習器本身hasattr(fiter, 'tree_')是否有tree_屬性,如果沒有使用決策樹替換
:param kwargs: 外部可以傳遞x, y, 通過
x = kwargs.pop('x', self.x)
y = kwargs.pop('y', self.y)
裝飾器使用的fiter_type,
eg:
ttn_abu = AbuML.create_test_more_fiter()
ttn_abu.plot_graphviz_tree(fiter_type=ml.EMLFitType.E_FIT_CLF)
"""
x = kwargs.pop('x', self.x)
y = kwargs.pop('y', self.y)
fiter = self.get_fiter()
if not hasattr(fiter, 'tree_'):
self.log_func('{} not hasattr tree_, use decision tree replace'.format(
fiter.__class__.__name__))
if isinstance(fiter, ClassifierMixin):
# FIXME 最好不要使用ClassifierMixin判定學習器類型,因為限定了sklearn
fiter = self.estimator.decision_tree_classifier(assign=False)
elif isinstance(fiter, RegressorMixin):
# # FIXME 最好不要使用RegressorMixin, AbuMLCreater中引用了hmmlearn,xgboost等第三方庫
fiter = self.estimator.decision_tree_regressor(assign=False)
else:
fiter = self.estimator.decision_tree_classifier(assign=False)
# 這裏需要將self.df.columns做為名字傳入
return ABuMLExecute.graphviz_tree(fiter, self.df.columns, x, y)
示例6: _scoring_grid
# 需要導入模塊: from sklearn import base [as 別名]
# 或者: from sklearn.base import RegressorMixin [as 別名]
def _scoring_grid(estimator, scoring):
"""
隻針對有監督學習過濾無監督學習,對scoring未賦予的情況根據
學習器分類器使用accuracy進行度量,回歸器使用可釋方差值explained_variance_score,
使用make_scorer對函數進行score封裝
:param estimator: 學習器對象
:param scoring: 度量使用的方法,未賦予的情況根據
學習器分類器使用accuracy進行度量,回歸器使用explained_variance_score進行度量
:return: scoring
"""
if not isinstance(estimator, (ClassifierMixin, RegressorMixin)):
logging.info('only support supervised learning')
# TODO 無監督學習的scoring度量以及GridSearchCV
return None
if scoring is None:
if isinstance(estimator, ClassifierMixin):
# 分類器使用accuracy
return 'accuracy'
elif isinstance(estimator, RegressorMixin):
# 回歸器使用可釋方差值explained_variance_score,使用make_scorer對函數進行score封裝
"""
make_scorer中通過greater_is_better對返回值進行正負分配
eg: sign = 1 if greater_is_better else -1
"""
return make_scorer(explained_variance_score, greater_is_better=True)
return None
return scoring
示例7: __init__
# 需要導入模塊: from sklearn import base [as 別名]
# 或者: from sklearn.base import RegressorMixin [as 別名]
def __init__(self, estimator, context, mode):
super(DecisionTreeConverter, self).__init__(estimator, context, mode)
assert len(self.context.schemas[Schema.OUTPUT]) == 1, 'Only one-label trees are supported'
assert hasattr(estimator, 'tree_'), 'Estimator has no tree_ attribute'
if mode == ModelMode.CLASSIFICATION:
if isinstance(self.context.schemas[Schema.OUTPUT][0], CategoricalFeature):
self.prediction_output = self.OUTPUT_LABEL
else:
self.prediction_output = self.OUTPUT_PROBABILITY
assert isinstance(self.estimator, ClassifierMixin), \
'Only a classifier can be serialized in classification mode'
if mode == ModelMode.REGRESSION:
assert isinstance(self.context.schemas[Schema.OUTPUT][0], NumericFeature), \
'Only a numeric feature can be an output of regression'
assert isinstance(self.estimator, RegressorMixin), \
'Only a regressor can be serialized in regression mode'
assert estimator.tree_.value.shape[1] == len(self.context.schemas[Schema.OUTPUT]), \
'Tree outputs {} results while the schema specifies {} output fields'.format(
estimator.tree_.value.shape[1], len(self.context.schemas[Schema.OUTPUT]))
# create hidden variables for each categorical output
# TODO: this code is copied from the ClassifierConverter. To make things right, we need an abstract tree
# TODO: converter and subclasses for classifier and regression converters
internal_schema = list(filter(lambda x: isinstance(x, CategoricalFeature), self.context.schemas[Schema.OUTPUT]))
self.context.schemas[Schema.INTERNAL] = internal_schema
示例8: evaluate
# 需要導入模塊: from sklearn import base [as 別名]
# 或者: from sklearn.base import RegressorMixin [as 別名]
def evaluate(self, point):
"""
Fits model using the particular setting of hyperparameters and
evaluates the model validation data.
Parameters
----------
* `point`: dict
A mapping of parameter names to the corresponding values
Returns
-------
* `score`: float
Score (more is better!) for some specific point
"""
X_train, y_train, X_test, y_test = (
self.X_train, self.y_train, self.X_test, self.y_test)
# apply transformation to model parameters, for example exp transformation
point_mapped = {}
for param, val in point.items():
point_mapped[param] = self.space[param][1](val)
model_instance = self.model(**point_mapped)
if 'random_state' in model_instance.get_params():
model_instance.set_params(random_state=self.random_state)
min_obj_val = -5.0
# Infeasible parameters are expected to raise an exception, thus the try
# catch below, infeasible parameters yield assumed smallest objective.
try:
model_instance.fit(X_train, y_train)
if isinstance(model_instance, RegressorMixin): # r^2 metric
y_predicted = model_instance.predict(X_test)
score = r2_score(y_test, y_predicted)
elif isinstance(model_instance, ClassifierMixin): # log loss
y_predicted = model_instance.predict_proba(X_test)
score = -log_loss(y_test, y_predicted) # in the context of this function, the higher score is better
# avoid any kind of singularitites, eg probability being zero, and thus breaking the log_loss
if math.isnan(score):
score = min_obj_val
score = max(score, min_obj_val) # this is necessary to avoid -inf or NaN
except BaseException as ex:
score = min_obj_val # on error: return assumed smallest value of objective function
return score
# this is necessary to generate table for README in the end
示例9: enumerate_pipeline_models
# 需要導入模塊: from sklearn import base [as 別名]
# 或者: from sklearn.base import RegressorMixin [as 別名]
def enumerate_pipeline_models(pipe, coor=None, vs=None):
"""
Enumerates all the models within a pipeline.
"""
if coor is None:
coor = (0,)
yield coor, pipe, vs
if hasattr(pipe, 'transformer_and_mapper_list') and len(
pipe.transformer_and_mapper_list):
# azureml DataTransformer
raise NotImplementedError("Unable to handle this specific case.")
elif hasattr(pipe, 'mapper') and pipe.mapper:
# azureml DataTransformer
for couple in enumerate_pipeline_models(pipe.mapper, coor + (0,)):
yield couple
elif hasattr(pipe, 'built_features'):
# sklearn_pandas.dataframe_mapper.DataFrameMapper
for i, (columns, transformers, _) in enumerate(pipe.built_features):
if isinstance(columns, str):
columns = (columns,)
if transformers is None:
yield (coor + (i,)), None, columns
else:
for couple in enumerate_pipeline_models(transformers,
coor + (i,),
columns):
yield couple
elif isinstance(pipe, Pipeline):
for i, (_, model) in enumerate(pipe.steps):
for couple in enumerate_pipeline_models(model, coor + (i,)):
yield couple
elif ColumnTransformer is not None and isinstance(pipe, ColumnTransformer):
for i, (_, fitted_transformer, column) in enumerate(pipe.transformers):
for couple in enumerate_pipeline_models(
fitted_transformer, coor + (i,), column):
yield couple
elif isinstance(pipe, FeatureUnion):
for i, (_, model) in enumerate(pipe.transformer_list):
for couple in enumerate_pipeline_models(model, coor + (i,)):
yield couple
elif TransformedTargetRegressor is not None and isinstance(
pipe, TransformedTargetRegressor):
raise NotImplementedError(
"Not yet implemented for TransformedTargetRegressor.")
elif isinstance(pipe, (TransformerMixin, ClassifierMixin, RegressorMixin)):
pass
elif isinstance(pipe, BaseEstimator):
pass
else:
raise TypeError(
"Parameter pipe is not a scikit-learn object: {}\n{}".format(
type(pipe), pipe))