本文整理匯總了Python中sklearn.base.BaseEstimator方法的典型用法代碼示例。如果您正苦於以下問題:Python base.BaseEstimator方法的具體用法?Python base.BaseEstimator怎麽用?Python base.BaseEstimator使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類sklearn.base
的用法示例。
在下文中一共展示了base.BaseEstimator方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_get_metadata_helper
# 需要導入模塊: from sklearn import base [as 別名]
# 或者: from sklearn.base import BaseEstimator [as 別名]
def test_get_metadata_helper(model: BaseEstimator, expect_empty_dict: bool):
"""
Ensure the builder works with various model configs and that each has
expected/valid metadata results.
"""
X, y = np.random.random((1000, 4)), np.random.random((1000,))
model.fit(X, y)
metadata = ModelBuilder._extract_metadata_from_model(model)
# All the metadata we've implemented so far is 'history', so we'll check that
if not expect_empty_dict:
assert "history" in metadata
assert all(
name in metadata["history"] for name in ("params", "loss", "accuracy")
)
else:
assert dict() == metadata
示例2: load_model
# 需要導入模塊: from sklearn import base [as 別名]
# 或者: from sklearn.base import BaseEstimator [as 別名]
def load_model(directory: str, name: str) -> BaseEstimator:
"""
Load a given model from the directory by name.
Parameters
----------
directory: str
Directory to look for the model
name: str
Name of the model to load, this would be the sub directory within the
directory parameter.
Returns
-------
BaseEstimator
"""
start_time = timeit.default_timer()
model = serializer.load(os.path.join(directory, name))
logger.debug(f"Time to load model: {timeit.default_timer() - start_time}s")
return model
示例3: _determine_offset
# 需要導入模塊: from sklearn import base [as 別名]
# 或者: from sklearn.base import BaseEstimator [as 別名]
def _determine_offset(
model: BaseEstimator, X: Union[np.ndarray, pd.DataFrame]
) -> int:
"""
Determine the model's offset. How much does the output of the model differ
from its input?
Parameters
----------
model: sklearn.base.BaseEstimator
Trained model with either ``predict`` or ``transform`` method, preference
given to ``predict``.
X: Union[np.ndarray, pd.DataFrame]
Data to pass to the model's ``predict`` or ``transform`` method.
Returns
-------
int
The difference between X and the model's output lengths.
"""
out = model.predict(X) if hasattr(model, "predict") else model.transform(X)
return len(X) - len(out)
示例4: _dispatch_models
# 需要導入模塊: from sklearn import base [as 別名]
# 或者: from sklearn.base import BaseEstimator [as 別名]
def _dispatch_models(algorithm_type: Union[str, Type[BaseEstimator]],
target_type: str, custom_eval: Optional[Callable] = None):
if not isinstance(algorithm_type, str):
assert issubclass(algorithm_type, BaseEstimator), "algorithm_type should be str or subclass of BaseEstimator"
return algorithm_type, _dispatch_eval_func(target_type, custom_eval), None
cat_features = {
'lgbm': 'categorical_feature',
'cat': 'cat_features',
'xgb': None
}
gbdt_class = _dispatch_gbdt_class(algorithm_type, target_type)
eval_func = _dispatch_eval_func(target_type, custom_eval)
return gbdt_class, eval_func, cat_features[algorithm_type]
示例5: test_sample_weight_adaboost_regressor
# 需要導入模塊: from sklearn import base [as 別名]
# 或者: from sklearn.base import BaseEstimator [as 別名]
def test_sample_weight_adaboost_regressor():
"""
AdaBoostRegressor should work without sample_weights in the base estimator
The random weighted sampling is done internally in the _boost method in
AdaBoostRegressor.
"""
class DummyEstimator(BaseEstimator):
def fit(self, X, y):
pass
def predict(self, X):
return np.zeros(X.shape[0])
boost = AdaBoostRegressor(DummyEstimator(), n_estimators=3)
boost.fit(X, y_regr)
assert_equal(len(boost.estimator_weights_), len(boost.estimator_errors_))
示例6: test_calibration_accepts_ndarray
# 需要導入模塊: from sklearn import base [as 別名]
# 或者: from sklearn.base import BaseEstimator [as 別名]
def test_calibration_accepts_ndarray(X):
"""Test that calibration accepts n-dimensional arrays as input"""
y = [1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0]
class MockTensorClassifier(BaseEstimator):
"""A toy estimator that accepts tensor inputs"""
def fit(self, X, y):
self.classes_ = np.unique(y)
return self
def decision_function(self, X):
# toy decision function that just needs to have the right shape:
return X.reshape(X.shape[0], -1).sum(axis=1)
calibrated_clf = CalibratedClassifierCV(MockTensorClassifier())
# we should be able to fit this classifier with no error
calibrated_clf.fit(X, y)
示例7: persist_estimator
# 需要導入模塊: from sklearn import base [as 別名]
# 或者: from sklearn.base import BaseEstimator [as 別名]
def persist_estimator(estimator: BaseEstimator) -> Path:
"""
Saves the given estimator to a gobbli-managed filepath, where it can be loaded from
disk by the SKLearnClassifier. This is useful if you want to use an estimator but
don't want to bother with saving it to disk on your own.
Args:
estimator: The estimator to load.
Returns:
The path where the estimator was saved.
"""
estimator_dir = (
SKLearnClassifier.model_class_dir() / "user_estimators" / generate_uuid()
)
estimator_dir.mkdir(exist_ok=True, parents=True)
estimator_path = estimator_dir / SKLearnClassifier._TRAIN_OUTPUT_CHECKPOINT
SKLearnClassifier._dump_estimator(estimator, estimator_path)
return estimator_path
示例8: _validate_estimator
# 需要導入模塊: from sklearn import base [as 別名]
# 或者: from sklearn.base import BaseEstimator [as 別名]
def _validate_estimator(estimator: BaseEstimator):
"""
Run some checks on the given object to determine if it's an estimator which is
valid for our purposes.
"""
# sklearn has a function that does a lot more intensive checking regarding
# the interface of a candidate Estimator
# (sklearn.utils.estimator_checks.check_estimator), but the function
# doesn't work well for our use case as of version 0.22. It doesn't properly
# detect Pipeline X_types based on the first pipeline component and won't
# test anything that doesn't accept a 2-D numpy array as input. We'll settle
# for lax checks here until sklearn has something that works better for us.
if not is_classifier(estimator):
raise ValueError(
"Estimator must be a classifier according to sklearn.base.is_classifier()"
)
if not hasattr(estimator, "predict_proba"):
raise ValueError(
"Estimator must support the predict_proba() method to fulfill gobbli's "
"interface requirements for a prediction model."
)
示例9: print_help
# 需要導入模塊: from sklearn import base [as 別名]
# 或者: from sklearn.base import BaseEstimator [as 別名]
def print_help(model, defaults=None):
"""Print help for the command line arguments of the given model.
Parameters
----------
model : sklearn.base.BaseEstimator
The basic model, e.g. a ``NeuralNet`` or sklearn ``Pipeline``.
defautls : dict or None (default=None)
Optionally, change the default values to use custom
defaults. Commandline arguments have precedence over defaults.
"""
defaults = defaults or {}
print("This is the help for the model-specific parameters.")
print("To invoke help for the remaining options, run:")
print("python {} -- --help".format(sys.argv[0]))
print()
lines = (_get_help_for_estimator(prefix, estimator, defaults=defaults) for
prefix, estimator in _yield_estimators(model))
print('\n'.join(chain(*lines)))
示例10: test_loader
# 需要導入模塊: from sklearn import base [as 別名]
# 或者: from sklearn.base import BaseEstimator [as 別名]
def test_loader(sklearn_model, project_manager):
skl = SklearnModel(artifact=sklearn_model)
skl.store(name='clf')
reloaded = skl.load(name='clf')
assert isinstance(reloaded, BaseEstimator)
skl2 = SklearnModel(artifact=sklearn_model)
skl2.store(name='clf')
reload_first = skl.load(run_number=1, name='clf')
assert isinstance(reload_first, BaseEstimator)
for root, dirs, files in os.walk(project_manager.CONFIG['saved-models']):
for f in files:
os.unlink(os.path.join(root, f))
for d in dirs:
shutil.rmtree(os.path.join(root, d))
with open(os.path.join(project_manager.CONFIG['saved-models'], '.gitkeep'), 'w') as gitkeep:
gitkeep.write('empty')
示例11: test_trainable_model_from_file
# 需要導入模塊: from sklearn import base [as 別名]
# 或者: from sklearn.base import BaseEstimator [as 別名]
def test_trainable_model_from_file(sklearn_model, project_manager):
skl = SklearnModel(artifact=sklearn_model)
# lr = LogisticRegression()
# trainable = TrainableModel(artifact=lr)
skl.store(name='clf')
trainable = TrainableModel.from_file(run_number=1, name='clf', model_type='sklearn')
assert isinstance(trainable.model, BaseEstimator)
for root, dirs, files in os.walk(project_manager.CONFIG['saved-models']):
for f in files:
os.unlink(os.path.join(root, f))
for d in dirs:
shutil.rmtree(os.path.join(root, d))
with open(os.path.join(project_manager.CONFIG['saved-models'], '.gitkeep'), 'w') as gitkeep:
gitkeep.write('empty')
示例12: __init__
# 需要導入模塊: from sklearn import base [as 別名]
# 或者: from sklearn.base import BaseEstimator [as 別名]
def __init__(self, classifier=None, predictors="all"):
"""Create an instance of the MissingnessClassifier.
The MissingnessClassifier inherits from sklearn BaseEstimator and
ClassifierMixin. This inheritence and this class' implementation
ensure that the MissingnessClassifier is a valid classifier that will
work in an sklearn pipeline.
Args:
classifier (classifier, optional): valid classifier from sklearn.
If None, default is xgboost. Note that classifier must
conform to sklearn style. This means it must implement the
`predict_proba` method and act as a porper classifier.
predictors (str, iter, dict, optiona): defaults to all, i.e.
use all predictors. If all, every column will be used for
every class prediction. If a list, subset of columns used for
all predictions. If a dict, specify which columns to use as
predictors for each imputation. Columns not specified in dict
will receive `all` by default.
"""
self.classifier = classifier
self.predictors = predictors
示例13: make_query_strategy
# 需要導入模塊: from sklearn import base [as 別名]
# 或者: from sklearn.base import BaseEstimator [as 別名]
def make_query_strategy(utility_measure: Callable, selector: Callable) -> Callable:
"""
Takes the given utility measure and selector functions and makes a query strategy by combining them.
Args:
utility_measure: Utility measure, for instance :func:`~modAL.disagreement.vote_entropy`, but it can be a custom
function as well. Should take a classifier and the unlabelled data and should return an array containing the
utility scores.
selector: Function selecting instances for query. Should take an array of utility scores and should return an
array containing the queried items.
Returns:
A function which returns queried instances given a classifier and an unlabelled pool.
"""
def query_strategy(classifier: BaseEstimator, X: modALinput) -> Tuple:
utility = utility_measure(classifier, X)
query_idx = selector(utility)
return query_idx, X[query_idx]
return query_strategy
示例14: check_class_labels
# 需要導入模塊: from sklearn import base [as 別名]
# 或者: from sklearn.base import BaseEstimator [as 別名]
def check_class_labels(*args: BaseEstimator) -> bool:
"""
Checks the known class labels for each classifier.
Args:
*args: Classifier objects to check the known class labels.
Returns:
True, if class labels match for all classifiers, False otherwise.
"""
try:
classes_ = [estimator.classes_ for estimator in args]
except AttributeError:
raise NotFittedError('Not all estimators are fitted. Fit all estimators before using this method.')
for classifier_idx in range(len(args) - 1):
if not np.array_equal(classes_[classifier_idx], classes_[classifier_idx+1]):
return False
return True
示例15: __init__
# 需要導入模塊: from sklearn import base [as 別名]
# 或者: from sklearn.base import BaseEstimator [as 別名]
def __init__(self,
estimator: BaseEstimator,
query_strategy: Callable,
X_training: Optional[modALinput] = None,
y_training: Optional[modALinput] = None,
bootstrap_init: bool = False,
force_all_finite: bool = True,
**fit_kwargs
) -> None:
assert callable(query_strategy), 'query_strategy must be callable'
self.estimator = estimator
self.query_strategy = query_strategy
self.X_training = X_training
self.y_training = y_training
if X_training is not None:
self._fit_to_known(bootstrap=bootstrap_init, **fit_kwargs)
assert isinstance(force_all_finite, bool), 'force_all_finite must be a bool'
self.force_all_finite = force_all_finite