本文整理匯總了Python中skipthoughts.eval_trec.evaluate方法的典型用法代碼示例。如果您正苦於以下問題:Python eval_trec.evaluate方法的具體用法?Python eval_trec.evaluate怎麽用?Python eval_trec.evaluate使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類skipthoughts.eval_trec
的用法示例。
在下文中一共展示了eval_trec.evaluate方法的2個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: main
# 需要導入模塊: from skipthoughts import eval_trec [as 別名]
# 或者: from skipthoughts.eval_trec import evaluate [as 別名]
def main(unused_argv):
if not FLAGS.data_dir:
raise ValueError("--data_dir is required.")
encoder = encoder_manager.EncoderManager()
# Maybe load unidirectional encoder.
if FLAGS.uni_checkpoint_path:
print("Loading unidirectional model...")
uni_config = configuration.model_config()
encoder.load_model(uni_config, FLAGS.uni_vocab_file,
FLAGS.uni_embeddings_file, FLAGS.uni_checkpoint_path)
# Maybe load bidirectional encoder.
if FLAGS.bi_checkpoint_path:
print("Loading bidirectional model...")
bi_config = configuration.model_config(bidirectional_encoder=True)
encoder.load_model(bi_config, FLAGS.bi_vocab_file, FLAGS.bi_embeddings_file,
FLAGS.bi_checkpoint_path)
if FLAGS.eval_task in ["MR", "CR", "SUBJ", "MPQA"]:
eval_classification.eval_nested_kfold(
encoder, FLAGS.eval_task, FLAGS.data_dir, use_nb=False)
elif FLAGS.eval_task == "SICK":
eval_sick.evaluate(encoder, evaltest=True, loc=FLAGS.data_dir)
elif FLAGS.eval_task == "MSRP":
eval_msrp.evaluate(
encoder, evalcv=True, evaltest=True, use_feats=True, loc=FLAGS.data_dir)
elif FLAGS.eval_task == "TREC":
eval_trec.evaluate(encoder, evalcv=True, evaltest=True, loc=FLAGS.data_dir)
else:
raise ValueError("Unrecognized eval_task: %s" % FLAGS.eval_task)
encoder.close()
示例2: main
# 需要導入模塊: from skipthoughts import eval_trec [as 別名]
# 或者: from skipthoughts.eval_trec import evaluate [as 別名]
def main(unused_argv):
if not FLAGS.data_dir:
raise ValueError("--data_dir is required.")
encoder = encoder_manager.EncoderManager()
# Maybe load unidirectional encoder.
if FLAGS.uni_checkpoint_path:
print("Loading unidirectional model...")
uni_config = configuration.model_config()
encoder.load_model(uni_config, FLAGS.uni_vocab_file,
FLAGS.uni_embeddings_file, FLAGS.uni_checkpoint_path)
# Maybe load bidirectional encoder.
if FLAGS.bi_checkpoint_path:
print("Loading bidirectional model...")
bi_config = configuration.model_config(bidirectional_encoder=True)
encoder.load_model(bi_config, FLAGS.bi_vocab_file,
FLAGS.bi_embeddings_file,
FLAGS.bi_checkpoint_path)
if FLAGS.eval_task in ["MR", "CR", "SUBJ", "MPQA"]:
eval_classification.eval_nested_kfold(
encoder, FLAGS.eval_task, FLAGS.data_dir, use_nb=False)
elif FLAGS.eval_task == "SICK":
eval_sick.evaluate(encoder, evaltest=True, loc=FLAGS.data_dir)
elif FLAGS.eval_task == "MSRP":
eval_msrp.evaluate(
encoder, evalcv=True, evaltest=True, use_feats=True,
loc=FLAGS.data_dir)
elif FLAGS.eval_task == "TREC":
eval_trec.evaluate(encoder, evalcv=True, evaltest=True,
loc=FLAGS.data_dir)
else:
raise ValueError("Unrecognized eval_task: %s" % FLAGS.eval_task)
encoder.close()