本文整理匯總了Python中skimage.util.view_as_windows方法的典型用法代碼示例。如果您正苦於以下問題:Python util.view_as_windows方法的具體用法?Python util.view_as_windows怎麽用?Python util.view_as_windows使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類skimage.util
的用法示例。
在下文中一共展示了util.view_as_windows方法的7個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: patchify
# 需要導入模塊: from skimage import util [as 別名]
# 或者: from skimage.util import view_as_windows [as 別名]
def patchify(image: np.ndarray, patch_size: Imsize, step: int = 1) -> np.ndarray:
"""
Split a 2D or 3D image into small patches given the patch size.
Parameters
----------
image: the image to be split. It can be 2d (m, n) or 3d (k, m, n)
patch_size: the size of a single patch
step: the step size between patches
Examples
--------
>>> image = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]])
>>> patches = patchify(image, (2, 2), step=1) # split image into 2*3 small 2*2 patches.
>>> assert patches.shape == (2, 3, 2, 2)
>>> reconstructed_image = unpatchify(patches, image.shape)
>>> assert (reconstructed_image == image).all()
"""
return view_as_windows(image, patch_size, step)
示例2: get_reg_ftr
# 需要導入模塊: from skimage import util [as 別名]
# 或者: from skimage.util import view_as_windows [as 別名]
def get_reg_ftr(self, channels, smp_loc=None):
"""
Compute regular features.
:param channels: shrunk channels for regular features
:param smp_loc: shrunk sample locations (None for all)
:return: regular features
"""
shrink = self.options["shrink"]
p_size = self.options["p_size"] / shrink
n_r, n_c, n_ch = channels.shape
reg_ftr = view_as_windows(channels, (p_size, p_size, n_ch))
reg_ftr = reg_ftr.reshape((n_r - p_size + 1, n_c - p_size + 1,
p_size ** 2 * n_ch))
if smp_loc is not None:
r_pos = [r - p_size / 2 for r, _ in smp_loc]
c_pos = [c - p_size / 2 for _, c in smp_loc]
reg_ftr = reg_ftr[r_pos, c_pos]
return reg_ftr
示例3: _search_minimum_distance
# 需要導入模塊: from skimage import util [as 別名]
# 或者: from skimage.util import view_as_windows [as 別名]
def _search_minimum_distance(self, ref, buff):
if len(ref) < self.fl:
ref = np.r_[ref, np.zeros(self.fl - len(ref))]
# slicing and windowing one sample by one
buffmat = view_as_windows(buff, self.fl) * self.win
refwin = np.array(ref * self.win).reshape(1, self.fl)
corr = correlate2d(buffmat, refwin, mode='valid')
return np.argmax(corr) - self.sl
示例4: _get_patches
# 需要導入模塊: from skimage import util [as 別名]
# 或者: from skimage.util import view_as_windows [as 別名]
def _get_patches(mspec, w, step):
h = mspec.shape[1]
data = vaw(mspec, (w,h), step=step)
data.shape = (len(data), w*h)
data = (data - np.mean(data, axis=1).reshape((len(data), 1))) / np.std(data, axis=1).reshape((len(data), 1))
lfill = [data[0,:].reshape(1, h*w)] * (w // (2 * step))
rfill = [data[-1,:].reshape(1, h*w)] * (w // (2* step) - 1 + len(mspec) % 2)
data = np.vstack(lfill + [data] + rfill )
finite = np.all(np.isfinite(data), axis=1)
data.shape = (len(data), w, h)
return data, finite
示例5: colfilt
# 需要導入模塊: from skimage import util [as 別名]
# 或者: from skimage.util import view_as_windows [as 別名]
def colfilt(A, kernelSize, option):
from skimage.util import view_as_windows as viewW
import numpy as np
A = np.lib.pad(A,((int((kernelSize[0]-1)/2),int((kernelSize[0]-1)/2)),(int((kernelSize[1]-1)/2),int((kernelSize[1]-1)/2))),mode='constant',constant_values=np.nan)
B = viewW(A, kernelSize).reshape(-1,kernelSize[0]*kernelSize[1]).T[:,::1]
output_size = (A.shape[0]-kernelSize[0]+1,A.shape[1]-kernelSize[1]+1)
C = np.zeros(output_size,dtype=A.dtype)
if option == 0:# max
C = np.nanmax(B,axis=0).reshape(output_size)
elif option == 1:# min
C = np.nanmin(B,axis=0).reshape(output_size)
elif option == 2:# mean
C = np.nanmean(B,axis=0).reshape(output_size)
elif option == 3:# median
C = np.nanmedian(B,axis=0).reshape(output_size)
elif option == 4:# range
C = np.nanmax(B,axis=0).reshape(output_size) - np.nanmin(B,axis=0).reshape(output_size)
elif option == 6:# MAD (Median Absolute Deviation)
m = B.shape[0]
D = np.abs(B - np.dot(np.ones((m,1),dtype=A.dtype), np.array([np.nanmedian(B,axis=0)])))
C = np.nanmedian(D,axis=0).reshape(output_size)
elif option[0] == 5:# displacement distance count with option[1] being the threshold
m = B.shape[0]
c = int(np.round((m + 1) / 2)-1)
# c = 0
D = np.abs(B - np.dot(np.ones((m,1),dtype=A.dtype), np.array([B[c,:]])))
C = np.sum(D<option[1],axis=0).reshape(output_size)
else:
sys.exit('invalid option for columnwise neighborhood filtering')
C = C.astype(A.dtype)
return C
示例6: get_ss_ftr
# 需要導入模塊: from skimage import util [as 別名]
# 或者: from skimage.util import view_as_windows [as 別名]
def get_ss_ftr(self, channels, smp_loc=None):
"""
Compute self-similarity features
:param channels: shrunk channels for self-similarity features
:param smp_loc: shrunk sample locations (None for all)
:return: self-similarity features
"""
shrink = self.options["shrink"]
p_size = self.options["p_size"] / shrink
n_r, n_c, n_ch = channels.shape
ss_ftr = view_as_windows(channels, (p_size, p_size, n_ch))
if smp_loc is not None:
ss_ftr = ss_ftr.reshape((n_r - p_size + 1, n_c - p_size + 1,
p_size ** 2, n_ch))
r_pos = [r - p_size / 2 for r, _ in smp_loc]
c_pos = [c - p_size / 2 for _, c in smp_loc]
ss_ftr = ss_ftr[r_pos, c_pos]
else:
ss_ftr = ss_ftr.reshape((-1, p_size ** 2, n_ch))
n_cell = self.options["n_cell"]
half_cell_size = int(round(p_size / (2.0 * n_cell)))
grid_pos = [int(round((i + 1) * (p_size + 2 * half_cell_size - 1) / \
(n_cell + 1.0) - half_cell_size))
for i in xrange(n_cell)]
grid_pos = [r * p_size + c for r in grid_pos for c in grid_pos]
ss_ftr = ss_ftr[:, grid_pos]
ss_ftr = pdist(ss_ftr)
return ss_ftr.reshape((ss_ftr.shape[0], -1))
示例7: run
# 需要導入模塊: from skimage import util [as 別名]
# 或者: from skimage.util import view_as_windows [as 別名]
def run(self, xs, ys=None, batch_size=None):
self._check_input_compatibility(xs, ys, batch_size)
input_shape = xs.shape[1:]
batch_size = xs.shape[0]
total_dim = np.asscalar(np.prod(input_shape))
# Create mask
index_matrix = np.arange(total_dim).reshape(input_shape)
idx_patches = view_as_windows(index_matrix, self.window_shape, self.step).reshape((-1,) + self.window_shape)
heatmap = np.zeros_like(xs, dtype=np.float32).reshape((-1), total_dim)
w = np.zeros_like(heatmap)
# Compute original output
eval0 = self._session_run(self.T, xs, ys, batch_size)
# Start perturbation loop
for i, p in enumerate(idx_patches):
mask = np.ones(input_shape).flatten()
mask[p.flatten()] = self.replace_value
masked_xs = mask.reshape((1,) + input_shape) * xs
delta = eval0 - self._session_run(self.T, masked_xs, ys, batch_size)
delta_aggregated = np.sum(delta.reshape((batch_size, -1)), -1, keepdims=True)
heatmap[:, p.flatten()] += delta_aggregated
w[:, p.flatten()] += p.size
attribution = np.reshape(heatmap / w, xs.shape)
if np.isnan(attribution).any():
warnings.warn('Attributions generated by Occlusion method contain nans, '
'probably because window_shape and step do not allow to cover the all input.')
return attribution