當前位置: 首頁>>代碼示例>>Python>>正文


Python util.random_noise方法代碼示例

本文整理匯總了Python中skimage.util.random_noise方法的典型用法代碼示例。如果您正苦於以下問題:Python util.random_noise方法的具體用法?Python util.random_noise怎麽用?Python util.random_noise使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在skimage.util的用法示例。


在下文中一共展示了util.random_noise方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: new_crap_AG_SP

# 需要導入模塊: from skimage import util [as 別名]
# 或者: from skimage.util import random_noise [as 別名]
def new_crap_AG_SP(x, scale=4, upsample=False):
    xn = np.array(x)
    xorig_max = xn.max()
    xn = xn.astype(np.float32)
    xn /= float(np.iinfo(np.uint8).max)

    lvar = filters.gaussian(xn, sigma=5) + 1e-10
    xn = random_noise(xn, mode='localvar', local_vars=lvar*0.5)

    xn = random_noise(xn, mode='salt', amount=0.005)
    xn = random_noise(xn, mode='pepper', amount=0.005)

    new_max = xn.max()
    x = xn
    if new_max > 0:
        xn /= new_max
    xn *= xorig_max
    multichannel = len(x.shape) > 2

    xn = rescale(xn, scale=1/scale, order=1, multichannel=multichannel)
    return PIL.Image.fromarray(xn.astype(np.uint8)) 
開發者ID:BPHO-Salk,項目名稱:PSSR,代碼行數:23,代碼來源:crappifiers.py

示例2: _prepare_images

# 需要導入模塊: from skimage import util [as 別名]
# 或者: from skimage.util import random_noise [as 別名]
def _prepare_images(path_out, im_size=IMAGE_SIZE):
    """ generate and prepare synth. images for registration

    :param str path_out: path to the folder
    :param tuple(int,int) im_size: desired image size
    :return tuple(str,str): paths to target and source image
    """
    image = resize(data.astronaut(), output_shape=im_size, mode='constant')
    img_target = random_noise(image, var=IMAGE_NOISE)
    path_img_target = os.path.join(path_out, NAME_IMAGE_TARGET)
    io.imsave(path_img_target, img_target)

    # warp synthetic image
    tform = AffineTransform(scale=(0.9, 0.9),
                            rotation=0.2,
                            translation=(200, -50))
    img_source = warp(image, tform.inverse, output_shape=im_size)
    img_source = random_noise(img_source, var=IMAGE_NOISE)
    path_img_source = os.path.join(path_out, NAME_IMAGE_SOURCE)
    io.imsave(path_img_source, img_source)
    return path_img_target, path_img_source 
開發者ID:Borda,項目名稱:BIRL,代碼行數:23,代碼來源:bm_comp_perform.py

示例3: new_crap

# 需要導入模塊: from skimage import util [as 別名]
# 或者: from skimage.util import random_noise [as 別名]
def new_crap(x, scale=4, upsample=False):
    xn = np.array(x)
    xorig_max = xn.max()
    xn = xn.astype(np.float32)
    xn /= float(np.iinfo(np.uint8).max)

    xn = random_noise(xn, mode='salt', amount=0.005)
    xn = random_noise(xn, mode='pepper', amount=0.005)
    lvar = filters.gaussian(xn, sigma=5) + 1e-10
    xn = random_noise(xn, mode='localvar', local_vars=lvar*0.5)
    new_max = xn.max()
    x = xn
    if new_max > 0:
        xn /= new_max
    xn *= xorig_max
    multichannel = len(x.shape) > 2
    x = rescale(x, scale=1/scale, order=1, multichannel=multichannel)
    return PIL.Image.fromarray(x.astype(np.uint8)) 
開發者ID:BPHO-Salk,項目名稱:PSSR,代碼行數:20,代碼來源:crappifiers.py

示例4: fluo_AG_D

# 需要導入模塊: from skimage import util [as 別名]
# 或者: from skimage.util import random_noise [as 別名]
def fluo_AG_D(x, scale=4, upsample=False):
    xn = np.array(x)
    xorig_max = xn.max()
    xn = xn.astype(np.float32)
    xn /= float(np.iinfo(np.uint8).max)

    lvar = filters.gaussian(xn, sigma=5) + 1e-10
    xn = random_noise(xn, mode='localvar', local_vars=lvar*0.5)
    new_max = xn.max()
    x = xn
    if new_max > 0:
        xn /= new_max
    xn *= xorig_max
    x_down = npzoom(x, 1/scale, order=1)
    #x_up = npzoom(x_down, scale, order=1)
    return PIL.Image.fromarray(x_down.astype(np.uint8)) 
開發者ID:BPHO-Salk,項目名稱:PSSR,代碼行數:18,代碼來源:crappifiers.py

示例5: fluo_SP_AG_D_sameas_preprint

# 需要導入模塊: from skimage import util [as 別名]
# 或者: from skimage.util import random_noise [as 別名]
def fluo_SP_AG_D_sameas_preprint(x, scale=4, upsample=False):
    xn = np.array(x)
    xorig_max = xn.max()
    xn = xn.astype(np.float32)
    xn /= float(np.iinfo(np.uint8).max)
    xn = random_noise(xn, mode='salt', amount=0.005)
    xn = random_noise(xn, mode='pepper', amount=0.005)
    lvar = filters.gaussian(xn, sigma=5) + 1e-10
    xn = random_noise(xn, mode='localvar', local_vars=lvar*0.5)
    new_max = xn.max()
    x = xn
    if new_max > 0:
        xn /= new_max
    xn *= xorig_max
    x_down = npzoom(x, 1/scale, order=1)
    return PIL.Image.fromarray(x_down.astype(np.uint8)) 
開發者ID:BPHO-Salk,項目名稱:PSSR,代碼行數:18,代碼來源:crappifiers.py

示例6: _my_noise

# 需要導入模塊: from skimage import util [as 別名]
# 或者: from skimage.util import random_noise [as 別名]
def _my_noise(x, gauss_sigma:uniform=0.01, pscale:uniform=10):
    xn = x.numpy()
    xorig_max = xn.max()

    xn = random_noise(xn, mode='salt', amount=0.005)
    xn = random_noise(xn, mode='pepper', amount=0.005)
    lvar = filters.gaussian(x, sigma=5) + 1e-10
    xn = random_noise(xn, mode='localvar', local_vars=lvar*0.5)
    #xn = np.random.poisson(xn*pscale)/pscale
    #xn += np.random.normal(0, gauss_sigma*xn.std(), size=x.shape)
    x = x.new(xn)
    new_max = xn.max()
    if new_max > 0:
        xn /= new_max
    xn *= xorig_max
    return x 
開發者ID:BPHO-Salk,項目名稱:PSSR,代碼行數:18,代碼來源:utils.py

示例7: speckle_crap

# 需要導入模塊: from skimage import util [as 別名]
# 或者: from skimage.util import random_noise [as 別名]
def speckle_crap(img):
    img = random_noise(img, mode='speckle', var=0.02, clip=True)
    return img 
開發者ID:BPHO-Salk,項目名稱:PSSR,代碼行數:5,代碼來源:synth.py

示例8: fluo_SP_D

# 需要導入模塊: from skimage import util [as 別名]
# 或者: from skimage.util import random_noise [as 別名]
def fluo_SP_D(x, scale=4, upsample=False):
    xn = np.array(x)
    xorig_max = xn.max()
    xn = xn.astype(np.float32)
    xn /= float(np.iinfo(np.uint8).max)
    xn = random_noise(xn, mode='salt', amount=0.005)
    xn = random_noise(xn, mode='pepper', amount=0.005)
    new_max = xn.max()
    x = xn
    if new_max > 0:
        xn /= new_max
    xn *= xorig_max
    x_down = npzoom(x, 1/scale, order=1)
    #x_up = npzoom(x_down, scale, order=1)
    return PIL.Image.fromarray(x_down.astype(np.uint8)) 
開發者ID:BPHO-Salk,項目名稱:PSSR,代碼行數:17,代碼來源:crappifiers.py

示例9: em_AG_D_sameas_preprint

# 需要導入模塊: from skimage import util [as 別名]
# 或者: from skimage.util import random_noise [as 別名]
def em_AG_D_sameas_preprint(x, scale=4, upsample=False):
    lvar = filters.gaussian(x, sigma=3)
    x = random_noise(x, mode='localvar', local_vars=lvar*0.05)
    x_down = npzoom(x, 1/scale, order=1)
    x_up = npzoom(x_down, scale, order=1)
    return x_down, x_up 
開發者ID:BPHO-Salk,項目名稱:PSSR,代碼行數:8,代碼來源:crappifiers.py

示例10: em_P_D_001

# 需要導入模塊: from skimage import util [as 別名]
# 或者: from skimage.util import random_noise [as 別名]
def em_P_D_001(x, scale=4, upsample=False):
    x = random_noise(x, mode='poisson', seed=1)
    x_down = npzoom(x, 1/scale, order=1)
    x_up = npzoom(x_down, scale, order=1)
    return x_down, x_up

###not sure about this one 
開發者ID:BPHO-Salk,項目名稱:PSSR,代碼行數:9,代碼來源:crappifiers.py

示例11: em_AG_P_D_001

# 需要導入模塊: from skimage import util [as 別名]
# 或者: from skimage.util import random_noise [as 別名]
def em_AG_P_D_001(x, scale=4, upsample=False):
    poisson_noisemap = np.random.poisson(x, size=None)
    set_trace()
    lvar = filters.gaussian(x, sigma=3)
    x = random_noise(x, mode='localvar', local_vars=lvar*0.05)
    x = x + poisson_noisemap
    #x = x - x.min()
    #x = x/x.max()
    x_down = npzoom(x, 1/scale, order=1)
    x_up = npzoom(x_down, scale, order=1)
    return x_down, x_up 
開發者ID:BPHO-Salk,項目名稱:PSSR,代碼行數:13,代碼來源:crappifiers.py

示例12: classic_crap

# 需要導入模塊: from skimage import util [as 別名]
# 或者: from skimage.util import random_noise [as 別名]
def classic_crap(img):
    img = random_noise(img, mode='salt', amount=0.005)
    img = random_noise(img, mode='pepper', amount=0.005)
    lvar = filters.gaussian(img, sigma=5) + 1e-6
    img = random_noise(img, mode='localvar', local_vars=lvar * 0.5)
    return img 
開發者ID:BPHO-Salk,項目名稱:PSSR,代碼行數:8,代碼來源:synth.py

示例13: apply_random_noise

# 需要導入模塊: from skimage import util [as 別名]
# 或者: from skimage.util import random_noise [as 別名]
def apply_random_noise(self, image, percent=30):
        """Apply random noise on an image (not used)"""
        random = np.random.randint(0, 100)
        if random < percent:
            image = random_noise(image)
        return image 
開發者ID:PacktPublishing,項目名稱:Advanced-Deep-Learning-with-Keras,代碼行數:8,代碼來源:data_generator.py

示例14: execute

# 需要導入模塊: from skimage import util [as 別名]
# 或者: from skimage.util import random_noise [as 別名]
def execute(self, image_array: ndarray):
        return random_noise(image_array) 
開發者ID:tomahim,項目名稱:py-image-dataset-generator,代碼行數:4,代碼來源:operations.py

示例15: random_noise

# 需要導入模塊: from skimage import util [as 別名]
# 或者: from skimage.util import random_noise [as 別名]
def random_noise(self, probability: float):
        self.__add_operation(RandomNoise(probability)) 
開發者ID:tomahim,項目名稱:py-image-dataset-generator,代碼行數:4,代碼來源:operations.py


注:本文中的skimage.util.random_noise方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。