本文整理匯總了Python中skimage.transform.warp方法的典型用法代碼示例。如果您正苦於以下問題:Python transform.warp方法的具體用法?Python transform.warp怎麽用?Python transform.warp使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類skimage.transform
的用法示例。
在下文中一共展示了transform.warp方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: shear
# 需要導入模塊: from skimage import transform [as 別名]
# 或者: from skimage.transform import warp [as 別名]
def shear(X, skew):
''' given a 2D image, shear and return a 2D image
parameters:
X is the 2D image of shape (nRows, nColumns)
skew is the amount to shear in the range 0 to 1.0
'''
rows = X.shape[0]
cols = X.shape[1]
ratioY = skew*cols/rows
matrix = np.array( [[1, ratioY, 0] ,[0, 1, 0] ,[0, 0, 1 ]])
tp=af.ProjectiveTransform(matrix=matrix)
#tp = tf.AffineTransform(scale=(.3,.3), shear=skew)
f = af.warp(X, tp)
return f
#
# class file_names(object):
# ''' store variants of file a file name with .jpg, .png, .box variations
# '''
# def __init__(selp, base_name, dir_name = ''):
# base = base_name
# jpeg = base_name + '.jpg'
# png = base_name + '.png'
# box = base_name + '.box'
示例2: _prepare_images
# 需要導入模塊: from skimage import transform [as 別名]
# 或者: from skimage.transform import warp [as 別名]
def _prepare_images(path_out, im_size=IMAGE_SIZE):
""" generate and prepare synth. images for registration
:param str path_out: path to the folder
:param tuple(int,int) im_size: desired image size
:return tuple(str,str): paths to target and source image
"""
image = resize(data.astronaut(), output_shape=im_size, mode='constant')
img_target = random_noise(image, var=IMAGE_NOISE)
path_img_target = os.path.join(path_out, NAME_IMAGE_TARGET)
io.imsave(path_img_target, img_target)
# warp synthetic image
tform = AffineTransform(scale=(0.9, 0.9),
rotation=0.2,
translation=(200, -50))
img_source = warp(image, tform.inverse, output_shape=im_size)
img_source = random_noise(img_source, var=IMAGE_NOISE)
path_img_source = os.path.join(path_out, NAME_IMAGE_SOURCE)
io.imsave(path_img_source, img_source)
return path_img_target, path_img_source
示例3: test_shear_x
# 需要導入模塊: from skimage import transform [as 別名]
# 或者: from skimage.transform import warp [as 別名]
def test_shear_x():
image = np.random.randint(low=0, high=255, size=(4, 4, 3), dtype=np.uint8)
color = tf.constant([255, 0, 255], tf.uint8)
level = tf.random.uniform(shape=(), minval=0, maxval=1)
tf_image = tf.constant(image)
sheared_img = transform_ops.shear_x(tf_image, level, replace=color)
transform_matrix = transform.AffineTransform(
np.array([[1, level.numpy(), 0], [0, 1, 0], [0, 0, 1]])
)
expected_img = transform.warp(
image, transform_matrix, order=0, cval=-1, preserve_range=True
)
mask = np.where(expected_img == -1)
expected_img[mask[0], mask[1], :] = color
np.testing.assert_equal(sheared_img.numpy(), expected_img)
# TODO: Parameterize on dtypes
示例4: test_shear_y
# 需要導入模塊: from skimage import transform [as 別名]
# 或者: from skimage.transform import warp [as 別名]
def test_shear_y():
image = np.random.randint(low=0, high=255, size=(4, 4, 3), dtype=np.uint8)
color = tf.constant([255, 0, 255], tf.dtypes.uint8)
level = tf.random.uniform(shape=(), minval=0, maxval=1)
tf_image = tf.constant(image)
sheared_img = transform_ops.shear_y(image=tf_image, level=level, replace=color)
transform_matrix = transform.AffineTransform(
np.array([[1, 0, 0], [level.numpy(), 1, 0], [0, 0, 1]])
)
expected_img = transform.warp(
image, transform_matrix, order=0, cval=-1, preserve_range=True
)
mask = np.where(expected_img == -1)
expected_img[mask[0], mask[1], :] = color
np.testing.assert_equal(sheared_img.numpy(), expected_img)
示例5: distort_affine_skimage
# 需要導入模塊: from skimage import transform [as 別名]
# 或者: from skimage.transform import warp [as 別名]
def distort_affine_skimage(image, rotation=10.0, shear=5.0, random_state=None):
if random_state is None:
random_state = np.random.RandomState(None)
rot = np.deg2rad(np.random.uniform(-rotation, rotation))
sheer = np.deg2rad(np.random.uniform(-shear, shear))
shape = image.shape
shape_size = shape[:2]
center = np.float32(shape_size) / 2. - 0.5
pre = transform.SimilarityTransform(translation=-center)
affine = transform.AffineTransform(rotation=rot, shear=sheer, translation=center)
tform = pre + affine
distorted_image = transform.warp(image, tform.params, mode='reflect')
return distorted_image.astype(np.float32)
示例6: __call__
# 需要導入模塊: from skimage import transform [as 別名]
# 或者: from skimage.transform import warp [as 別名]
def __call__(self, img):
img_data = np.array(img)
h, w, n_chan = img_data.shape
scale_x = np.random.uniform(*self.scale_range)
scale_y = np.random.uniform(*self.scale_range)
scale = (scale_x, scale_y)
rotation = np.random.uniform(*self.rotation_range)
shear = np.random.uniform(*self.shear_range)
translation = (
np.random.uniform(*self.translation_range) * w,
np.random.uniform(*self.translation_range) * h
)
af = AffineTransform(scale=scale, shear=shear, rotation=rotation,
translation=translation)
img_data1 = warp(img_data, af.inverse)
img1 = Image.fromarray(np.uint8(img_data1 * 255))
return img1
示例7: lfw_imgs
# 需要導入模塊: from skimage import transform [as 別名]
# 或者: from skimage.transform import warp [as 別名]
def lfw_imgs(alignment):
if alignment == 'landmarks':
dataset = dp.dataset.LFW('original')
imgs = dataset.imgs
landmarks = dataset.landmarks('68')
n_landmarks = 68
landmarks_mean = np.mean(landmarks, axis=0)
landmarks_mean = np.array([landmarks_mean[:n_landmarks],
landmarks_mean[n_landmarks:]])
aligned_imgs = []
for img, points in zip(imgs, landmarks):
points = np.array([points[:n_landmarks], points[n_landmarks:]])
transf = transform.estimate_transform('similarity',
landmarks_mean.T, points.T)
img = img / 255.
img = transform.warp(img, transf, order=3)
img = np.round(img*255).astype(np.uint8)
aligned_imgs.append(img)
imgs = np.array(aligned_imgs)
else:
dataset = dp.dataset.LFW(alignment)
imgs = dataset.imgs
return imgs
示例8: transform_img__
# 需要導入模塊: from skimage import transform [as 別名]
# 或者: from skimage.transform import warp [as 別名]
def transform_img__(self, img, fn, emotion):
self.images[fn] = {'Image': img, 'Emotion': emotion} # Store original
counter = 0
self.images["Trans" + str(counter) + "_" + fn] = {'Image': np.fliplr(img), 'Emotion': emotion} # FLIP the image
counter += 1
for deg in range(-10, 15, 5): # ROTATE to be robust to camera orientation
if deg == 0:
continue
self.images["Trans" + str(counter) + "_" + fn] = {'Image': tf.rotate(img, deg), 'Emotion': emotion}
counter += 1
lenX, lenY = img.shape # CROP based on rough heuristic
for crop_size in range(8, 14, 2):
cropped = img[lenX / crop_size: - lenX / crop_size, lenY / crop_size: - lenY / crop_size]
self.images["Trans" + str(counter) + "_" + fn] = {'Image': cropped, 'Emotion': emotion}
counter += 1
for i in range(2): # SCALE down images (random factor btw 1.1 to 1.21)
scale_factor = math.sqrt(1.1) ** np.random.randint(2, 5)
scaled_img = tf.warp(img, tf.AffineTransform(scale=(scale_factor, scale_factor)))
self.images["Trans" + str(counter) + "_" + fn] = {'Image': scaled_img, 'Emotion': emotion}
counter += 1
示例9: function
# 需要導入模塊: from skimage import transform [as 別名]
# 或者: from skimage.transform import warp [as 別名]
def function(self, x, y):
signal2D = self.signal.data
order = self.order
d11 = self.d11.value
d12 = self.d12.value
d21 = self.d21.value
d22 = self.d22.value
t1 = self.t1.value
t2 = self.t2.value
D = np.array([[d11, d12, t1], [d21, d22, t2], [0.0, 0.0, 1.0]])
shifty, shiftx = np.array(signal2D.shape[:2]) / 2
shift = tf.SimilarityTransform(translation=[-shiftx, -shifty])
tform = tf.AffineTransform(matrix=D)
shift_inv = tf.SimilarityTransform(translation=[shiftx, shifty])
transformed = tf.warp(
signal2D, (shift + (tform + shift_inv)).inverse, order=order
)
return transformed
示例10: run
# 需要導入模塊: from skimage import transform [as 別名]
# 或者: from skimage.transform import warp [as 別名]
def run(self, stack: ImageStack, transforms_list: TransformsList,
in_place: bool=False, verbose: bool=False, *args, **kwargs) -> Optional[ImageStack]:
if not in_place:
# create a copy of the ImageStack, call apply on that stack with in_place=True
image_stack = deepcopy(stack)
self.run(image_stack, transforms_list, in_place=True, **kwargs)
return image_stack
if verbose and StarfishConfig().verbose:
transforms_list.transforms = tqdm(transforms_list.transforms)
all_axes = {Axes.ROUND, Axes.CH, Axes.ZPLANE}
for selector, _, transformation_object in transforms_list.transforms:
other_axes = all_axes - set(selector.keys())
# iterate through remaining axes
for axes in stack._iter_axes(other_axes):
# combine all axes data to select one tile
selector.update(axes) # type: ignore
selected_image, _ = stack.get_slice(selector)
warped_image = warp(selected_image, transformation_object, **kwargs
).astype(np.float32)
stack.set_slice(selector, warped_image)
return None
示例11: warp
# 需要導入模塊: from skimage import transform [as 別名]
# 或者: from skimage.transform import warp [as 別名]
def warp(
image: xr.DataArray,
transformation_object: GeometricTransform,
**kwargs
) -> xr.DataArray:
"""
Wrapper around :py:func:`skimage.transform.warp`. Warps an image according to a
given coordinate transformation.
Parameters
----------
image : xr.DataArray
The image to be transformed
transformation_object : :py:class:`~skimage.transform._geometric.GeometricTransform`
The transformation object to apply.
Returns
-------
np.ndarray :
the warped image.
"""
return transform.warp(image, transformation_object, **kwargs)
示例12: align_face
# 需要導入模塊: from skimage import transform [as 別名]
# 或者: from skimage.transform import warp [as 別名]
def align_face(self,
image,
face_rect, *,
dim=96,
border=0,
mask=FaceAlignMask.INNER_EYES_AND_BOTTOM_LIP):
mask = np.array(mask.value)
landmarks = self.get_landmarks(image, face_rect)
proper_landmarks = border + dim * self.face_template[mask]
A = np.hstack([landmarks[mask], np.ones((3, 1))]).astype(np.float64)
B = np.hstack([proper_landmarks, np.ones((3, 1))]).astype(np.float64)
T = np.linalg.solve(A, B).T
wrapped = tr.warp(image,
tr.AffineTransform(T).inverse,
output_shape=(dim + 2 * border, dim + 2 * border),
order=3,
mode='constant',
cval=0,
clip=True,
preserve_range=True)
return wrapped
示例13: scale_mask
# 需要導入模塊: from skimage import transform [as 別名]
# 或者: from skimage.transform import warp [as 別名]
def scale_mask(mask, factor=1.05):
nzy, nzx, _ = mask.nonzero()
if nzy.size == 0:
return mask
#center_y, center_x = nzy.mean(), nzx.mean()
#print center_y, center_x
center_y, center_x = (nzy.max() + nzy.min()) / 2, (nzx.max() + nzx.min()) / 2
#print center_y, center_x
shift_ = SimilarityTransform(translation=[-center_x, -center_y])
shift_inv = SimilarityTransform(translation=[center_x, center_y])
A = SimilarityTransform(scale=(factor, factor))
mask_out = warp(mask, (shift_ + (A + shift_inv)).inverse)
mask_out = (mask_out > 0.5).astype("float32")
#import matplotlib.pyplot as plt
#im = numpy.concatenate([mask, mask, mask_out],axis=2)
#plt.imshow(im)
#plt.show()
return mask_out
示例14: augment
# 需要導入模塊: from skimage import transform [as 別名]
# 或者: from skimage.transform import warp [as 別名]
def augment(
rotation_fn=lambda: np.random.random_integers(0, 360),
translation_fn=lambda: (np.random.random_integers(-20, 20), np.random.random_integers(-20, 20)),
scale_factor_fn=random_zoom_range(),
shear_fn=lambda: np.random.random_integers(-10, 10)
):
def call(x):
rotation = rotation_fn()
translation = translation_fn()
scale = scale_factor_fn()
shear = shear_fn()
tf_augment = AffineTransform(scale=scale, rotation=np.deg2rad(rotation), translation=translation, shear=np.deg2rad(shear))
tf = tf_center + tf_augment + tf_uncenter
x = warp(x, tf, order=1, preserve_range=True, mode='symmetric')
return x
return call
示例15: augment_deterministic
# 需要導入模塊: from skimage import transform [as 別名]
# 或者: from skimage.transform import warp [as 別名]
def augment_deterministic(
rotation=0,
translation=0,
scale_factor=1,
shear=0
):
def call(x):
scale = scale_factor, scale_factor
rotation_tmp = rotation
tf_augment = AffineTransform(
scale=scale,
rotation=np.deg2rad(rotation_tmp),
translation=translation,
shear=np.deg2rad(shear)
)
tf = tf_center + tf_augment + tf_uncenter
x = warp(x, tf, order=1, preserve_range=True, mode='symmetric')
return x
return call