本文整理匯總了Python中skimage.transform.rotate方法的典型用法代碼示例。如果您正苦於以下問題:Python transform.rotate方法的具體用法?Python transform.rotate怎麽用?Python transform.rotate使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類skimage.transform
的用法示例。
在下文中一共展示了transform.rotate方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: handle_alphabet
# 需要導入模塊: from skimage import transform [as 別名]
# 或者: from skimage.transform import rotate [as 別名]
def handle_alphabet(folder):
print('{}...'.format(folder.split('/')[-1]))
for rotate in [0, 90, 180, 270]:
# Create new folders for each augmented alphabet
mkdir(f'{folder}.{rotate}')
for root, character_folders, _ in os.walk(folder):
for character_folder in character_folders:
# For each character folder in an alphabet rotate and resize all of the images and save
# to the new folder
handle_characters(folder, root + '/' + character_folder, rotate)
# return
# Delete original alphabet
rmdir(folder)
# Clean up previous extraction
示例2: _rotate_bboxes
# 需要導入模塊: from skimage import transform [as 別名]
# 或者: from skimage.transform import rotate [as 別名]
def _rotate_bboxes(self, bbox_list, r_angle, hm):
""" rotate augmentation
"""
# angle 2 radian
radian = r_angle * math.pi / 180
# rotation matrix
rotation_mat = np.array([[np.cos(radian), np.sin(radian)],
[-np.sin(radian), np.cos(radian)]])
# rotate the bounding box
del_ind = []
for ind in range(bbox_list.shape[0]):
rel_pos = np.dot(
rotation_mat, bbox_list[ind, :2]-np.round(np.array(hm.shape[:2])/2.0))
bbox_list[ind, :2] = rel_pos + np.round(np.array(hm.shape[:2])/2.0)
bbox_list[ind, 2:4] = np.dot(
np.abs(rotation_mat), bbox_list[ind, 2:4])
if (bbox_list[ind] < 0).any() or (bbox_list[ind, :2] > hm.shape[:2]).any():
del_ind.append(ind)
bbox_list = np.delete(bbox_list, del_ind, 0)
return bbox_list
示例3: _augment
# 需要導入模塊: from skimage import transform [as 別名]
# 或者: from skimage.transform import rotate [as 別名]
def _augment(self, img, hm, mask, max_rotation=30, angle=None):
""" # TODO : IMPLEMENT DATA AUGMENTATION
"""
if random.choice([0, 1]):
if angle==None:
r_angle = np.random.randint(-1 * max_rotation, max_rotation)
else:
r_angle = angle
'''
# old version
img = transform.rotate(img, r_angle, preserve_range=True)
hm = transform.rotate(hm, r_angle)
rmask = transform.rotate(rmask, r_angle)
'''
img = self._rotate_img(img, r_angle)
hm = self._rotate_hm(hm, r_angle)
mask = self._rotate_mask(mask, r_angle)
return img, hm, mask
# ----------------------- Batch Generator ----------------------------------
示例4: polar_transform
# 需要導入模塊: from skimage import transform [as 別名]
# 或者: from skimage.transform import rotate [as 別名]
def polar_transform(img, mask, img_size, mode='train'):
random_rotate_seed = 3 * 90
width_shift = 0
heigth_shift = 0
if mode == 'train':
random_rotate_seed = random.randint(0,3) * 90
width_shift = random.randint(0,40) - 20
heigth_shift = random.randint(0,40) - 20
img = rotate(cv2.linearPolar(img, (img_size / 2 + width_shift, img_size / 2 + heigth_shift), img_size / 2 - 20,
cv2.WARP_FILL_OUTLIERS), random_rotate_seed)
mask = rotate(cv2.linearPolar(mask, (img_size / 2 + width_shift, img_size / 2 + heigth_shift), img_size / 2 - 20,
cv2.WARP_FILL_OUTLIERS), random_rotate_seed)
return img, mask
示例5: transform_img__
# 需要導入模塊: from skimage import transform [as 別名]
# 或者: from skimage.transform import rotate [as 別名]
def transform_img__(self, img, fn, emotion):
self.images[fn] = {'Image': img, 'Emotion': emotion} # Store original
counter = 0
self.images["Trans" + str(counter) + "_" + fn] = {'Image': np.fliplr(img), 'Emotion': emotion} # FLIP the image
counter += 1
for deg in range(-10, 15, 5): # ROTATE to be robust to camera orientation
if deg == 0:
continue
self.images["Trans" + str(counter) + "_" + fn] = {'Image': tf.rotate(img, deg), 'Emotion': emotion}
counter += 1
lenX, lenY = img.shape # CROP based on rough heuristic
for crop_size in range(8, 14, 2):
cropped = img[lenX / crop_size: - lenX / crop_size, lenY / crop_size: - lenY / crop_size]
self.images["Trans" + str(counter) + "_" + fn] = {'Image': cropped, 'Emotion': emotion}
counter += 1
for i in range(2): # SCALE down images (random factor btw 1.1 to 1.21)
scale_factor = math.sqrt(1.1) ** np.random.randint(2, 5)
scaled_img = tf.warp(img, tf.AffineTransform(scale=(scale_factor, scale_factor)))
self.images["Trans" + str(counter) + "_" + fn] = {'Image': scaled_img, 'Emotion': emotion}
counter += 1
示例6: augmentation
# 需要導入模塊: from skimage import transform [as 別名]
# 或者: from skimage.transform import rotate [as 別名]
def augmentation(image, org_width=160,org_height=224, width=190, height=262):
max_angle=20
image=resize(image,(width,height))
angle=np.random.randint(max_angle)
if np.random.randint(2):
angle=-angle
image=rotate(image,angle,resize=True)
xstart=np.random.randint(width-org_width)
ystart=np.random.randint(height-org_height)
image=image[xstart:xstart+org_width,ystart:ystart+org_height]
if np.random.randint(2):
image=cv2.flip(image,1)
if np.random.randint(2):
image=cv2.flip(image,0)
# image=resize(image,(org_width,org_height))
print(image.shape)
plt.imshow(image)
plt.show()
示例7: rotate_images
# 需要導入模塊: from skimage import transform [as 別名]
# 或者: from skimage.transform import rotate [as 別名]
def rotate_images(file_path, degrees_of_rotation, lst_imgs):
'''
Rotates image based on a specified amount of degrees
INPUT
file_path: file path to the folder containing images.
degrees_of_rotation: Integer, specifying degrees to rotate the
image. Set number from 1 to 360.
lst_imgs: list of image strings.
OUTPUT
Images rotated by the degrees of rotation specififed.
'''
for l in lst_imgs:
img = io.imread(file_path + str(l) + '.jpeg')
img = rotate(img, degrees_of_rotation)
io.imsave(file_path + str(l) + '_' + str(degrees_of_rotation) + '.jpeg', img)
示例8: deskew
# 需要導入模塊: from skimage import transform [as 別名]
# 或者: from skimage.transform import rotate [as 別名]
def deskew(self):
img = io.imread(self.input_file)
res = self.skew_obj.process_single_file()
angle = res['Estimated Angle']
if angle >= 0 and angle <= 90:
rot_angle = angle - 90 + self.r_angle
if angle >= -45 and angle < 0:
rot_angle = angle - 90 + self.r_angle
if angle >= -90 and angle < -45:
rot_angle = 90 + angle + self.r_angle
rotated = rotate(img, rot_angle, resize=True)
if self.display_image:
self.display(rotated)
if self.output_file:
self.saveImage(rotated*255)
示例9: augment_inplane_gen
# 需要導入模塊: from skimage import transform [as 別名]
# 或者: from skimage.transform import rotate [as 別名]
def augment_inplane_gen(xyz_id,img,img_r,depth_rend,mask,isYCB=False,step=10):
depth_mask = (depth_rend>0).astype(np.float)
for rot in np.arange(step,360,step):
xyz_fn = os.path.join(xyz_dir,"{:06d}_{:03d}.npy".format(xyz_id,rot))
img_r_rot = rotate((img_r/255).astype(np.float32), rot,resize=True,cval=0)*255
img_rot = rotate((img/255).astype(np.float32), rot,resize=True,cval=0.5)*255
depth_rot = rotate(depth_mask, rot,resize=True)
if(isYCB):
mask_rot = rotate(mask.astype(np.float32), rot,resize=True)
vu_box = np.where(depth_rot>0)
bbox_t = np.array([np.min(vu_box[0]),np.min(vu_box[1]),np.max(vu_box[0]),np.max(vu_box[1])])
if(isYCB):img_npy = np.zeros((bbox_t[2]-bbox_t[0],bbox_t[3]-bbox_t[1],7),np.uint8)
else:img_npy = np.zeros((bbox_t[2]-bbox_t[0],bbox_t[3]-bbox_t[1],6),np.uint8)
img_npy[:,:,:3]=[128,128,128]
img_npy[:,:,:3]=img_rot[bbox_t[0]:bbox_t[2],bbox_t[1]:bbox_t[3]]
img_npy[:,:,3:6]=img_r_rot[bbox_t[0]:bbox_t[2],bbox_t[1]:bbox_t[3]]
if(isYCB):
img_npy[:,:,6]=mask_rot[bbox_t[0]:bbox_t[2],bbox_t[1]:bbox_t[3]]
data=img_npy
max_axis=max(data.shape[0],data.shape[1])
if(max_axis>128):
scale = 128.0/max_axis
new_shape=np.array([data.shape[0]*scale+0.5,data.shape[1]*scale+0.5]).astype(np.int)
new_data = np.zeros((new_shape[0],new_shape[1],data.shape[2]),data.dtype)
new_data[:,:,:3] = resize( (data[:,:,:3]/255).astype(np.float32),(new_shape[0],new_shape[1]))*255
new_data[:,:,3:6] = resize( (data[:,:,3:6]/255).astype(np.float32),(new_shape[0],new_shape[1]))*255
if(data.shape[2]>6):
new_data[:,:,6:] = (resize(data[:,:,6:],(new_shape[0],new_shape[1]))>0.5).astype(np.uint8)
else:
new_data=data
np.save(xyz_fn,new_data)
示例10: _load_sample
# 需要導入模塊: from skimage import transform [as 別名]
# 或者: from skimage.transform import rotate [as 別名]
def _load_sample(self, sample, text_only):
loader = PageXMLDatasetLoader(self.mode, self._non_existing_as_empty, self.text_index, self.skip_invalid)
image_path, xml_path = sample
img = None
if self.mode == DataSetMode.PREDICT or self.mode == DataSetMode.TRAIN or self.mode == DataSetMode.PRED_AND_EVAL:
img = np.array(Image.open(image_path))
for sample in loader.load(image_path, xml_path):
text = sample["text"]
orientation = sample["orientation"]
if not text_only and (self.mode == DataSetMode.PREDICT or self.mode == DataSetMode.TRAIN or self.mode == DataSetMode.PRED_AND_EVAL):
ly, lx = img.shape[:2]
line_img = PageXMLDataset.cutout(img, sample['coords'], lx / sample['img_width'])
# rotate by orientation angle in clockwise direction to correct present skew
# (skimage rotates in counter-clockwise direction)
if orientation and orientation % 360 != 0:
line_img = rotate(line_img, orientation*-1, resize=True, mode='constant', cval=line_img.max(), preserve_range=True).astype(np.uint8)
# add padding as required from normal files
if self.args.get('pad', None):
pad = self.args['pad']
img = np.pad(img, pad, mode='constant', constant_values=img.max())
else:
line_img = None
yield line_img, text
示例11: handle_characters
# 需要導入模塊: from skimage import transform [as 別名]
# 或者: from skimage.transform import rotate [as 別名]
def handle_characters(alphabet_folder, character_folder, rotate):
for root, _, character_images in os.walk(character_folder):
character_name = root.split('/')[-1]
mkdir(f'{alphabet_folder}.{rotate}/{character_name}')
for img_path in character_images:
# print(root+'/'+img_path)
img = io.imread(root+'/'+img_path)
img = transform.rotate(img, angle=rotate)
img = transform.resize(img, output_shape, anti_aliasing=True)
img = (img - img.min()) / (img.max() - img.min())
# print(img.min(), img.max())
# print(f'{alphabet_folder}.{rotate}/{character_name}/{img_path}')
io.imsave(f'{alphabet_folder}.{rotate}/{character_name}/{img_path}', img)
# return
示例12: turn_filename_into_image
# 需要導入模塊: from skimage import transform [as 別名]
# 或者: from skimage.transform import rotate [as 別名]
def turn_filename_into_image(filenames, batch_size, width, height, img_dir):
empty_x = []
rot_value = random.randint(-20,20)
flip_lr = bool(random.getrandbits(1))
flip_ud = bool(random.getrandbits(1))
for name in filenames:
image_x = img_to_array(load_img(img_dir + name, target_size=(width, height)))
image_x = np.array(image_x, dtype='float32')
image_x = (1.0/(255./2))*image_x - 1
image_x = rotate(image_x, rot_value, mode='reflect')
if flip_lr:
image_x = np.fliplr(image_x)
empty_x.append(image_x)
empty_x = np.array(empty_x, dtype='float32')
lab_batch = rgb2lab(empty_x)
X_batch = lab_batch[:,:,:,0] / 100
X_batch = X_batch.reshape(X_batch.shape+(1,))
Y_batch = lab_batch[:,:,:,1:] / 128
return np.array(X_batch, dtype='float32'), np.array(Y_batch, dtype='float32')
示例13: _rotate_img
# 需要導入模塊: from skimage import transform [as 別名]
# 或者: from skimage.transform import rotate [as 別名]
def _rotate_img(self, img, r_angle):
""" rotate augmentation
"""
img = transform.rotate(img, r_angle, preserve_range=True)
return img
示例14: _rotate_hm
# 需要導入模塊: from skimage import transform [as 別名]
# 或者: from skimage.transform import rotate [as 別名]
def _rotate_hm(self, _map, r_angle):
""" rotate augmentation
"""
_map[:, :, :-1] = transform.rotate(_map[:, :, :-1], r_angle)
_map[:, :, -1] = transform.rotate(_map[:, :, -1], r_angle, cval=1)
return _map
示例15: _rotate_mask
# 需要導入模塊: from skimage import transform [as 別名]
# 或者: from skimage.transform import rotate [as 別名]
def _rotate_mask(self, _map, r_angle):
""" rotate augmentation
"""
_map = transform.rotate(_map, r_angle)
return _map