本文整理匯總了Python中skimage.transform.resize方法的典型用法代碼示例。如果您正苦於以下問題:Python transform.resize方法的具體用法?Python transform.resize怎麽用?Python transform.resize使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類skimage.transform
的用法示例。
在下文中一共展示了transform.resize方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: PreprocessContentImage
# 需要導入模塊: from skimage import transform [as 別名]
# 或者: from skimage.transform import resize [as 別名]
def PreprocessContentImage(path, long_edge):
img = io.imread(path)
logging.info("load the content image, size = %s", img.shape[:2])
factor = float(long_edge) / max(img.shape[:2])
new_size = (int(img.shape[0] * factor), int(img.shape[1] * factor))
resized_img = transform.resize(img, new_size)
sample = np.asarray(resized_img) * 256
# swap axes to make image from (224, 224, 3) to (3, 224, 224)
sample = np.swapaxes(sample, 0, 2)
sample = np.swapaxes(sample, 1, 2)
# sub mean
sample[0, :] -= 123.68
sample[1, :] -= 116.779
sample[2, :] -= 103.939
logging.info("resize the content image to %s", new_size)
return np.resize(sample, (1, 3, sample.shape[1], sample.shape[2]))
示例2: PreprocessImage
# 需要導入模塊: from skimage import transform [as 別名]
# 或者: from skimage.transform import resize [as 別名]
def PreprocessImage(path, show_img=False):
# load image
img = io.imread(path)
print("Original Image Shape: ", img.shape)
# we crop image from center
short_egde = min(img.shape[:2])
yy = int((img.shape[0] - short_egde) / 2)
xx = int((img.shape[1] - short_egde) / 2)
crop_img = img[yy : yy + short_egde, xx : xx + short_egde]
# resize to 224, 224
resized_img = transform.resize(crop_img, (224, 224))
# convert to numpy.ndarray
sample = np.asarray(resized_img) * 255
# swap axes to make image from (224, 224, 3) to (3, 224, 224)
sample = np.swapaxes(sample, 0, 2)
sample = np.swapaxes(sample, 1, 2)
# sub mean
return sample
# Get preprocessed batch (single image batch)
示例3: evaluate_sliding_window
# 需要導入模塊: from skimage import transform [as 別名]
# 或者: from skimage.transform import resize [as 別名]
def evaluate_sliding_window(img_filename, crops):
img = io.imread(img_filename).astype(np.float32)/255
if img.ndim == 2: # Handle B/W images
img = np.expand_dims(img, axis=-1)
img = np.repeat(img, 3, 2)
img_crops = np.zeros((batch_size, 227, 227, 3))
for i in xrange(len(crops)):
crop = crops[i]
img_crop = transform.resize(img[crop[1]:crop[1]+crop[3],crop[0]:crop[0]+crop[2]], (227, 227))-0.5
img_crop = np.expand_dims(img_crop, axis=0)
img_crops[i,:,:,:] = img_crop
# compute ranking scores
scores = sess.run([score_func], feed_dict={image_placeholder: img_crops})
# find the optimal crop
idx = np.argmax(scores[:len(crops)])
best_window = crops[idx]
# return the best crop
return (best_window[0], best_window[1], best_window[2], best_window[3])
示例4: show_landmarks
# 需要導入模塊: from skimage import transform [as 別名]
# 或者: from skimage.transform import resize [as 別名]
def show_landmarks(image, heatmap, gt_landmarks, gt_heatmap):
"""Show image with pred_landmarks"""
pred_landmarks = []
pred_landmarks, _ = get_preds_fromhm(torch.from_numpy(heatmap).unsqueeze(0))
pred_landmarks = pred_landmarks.squeeze()*4
# pred_landmarks2 = get_preds_fromhm2(heatmap)
heatmap = np.max(gt_heatmap, axis=0)
heatmap = heatmap / np.max(heatmap)
# image = ski_transform.resize(image, (64, 64))*255
image = image.astype(np.uint8)
heatmap = np.max(gt_heatmap, axis=0)
heatmap = ski_transform.resize(heatmap, (image.shape[0], image.shape[1]))
heatmap *= 255
heatmap = heatmap.astype(np.uint8)
heatmap = cv2.applyColorMap(heatmap, cv2.COLORMAP_JET)
plt.imshow(image)
plt.scatter(gt_landmarks[:, 0], gt_landmarks[:, 1], s=0.5, marker='.', c='g')
plt.scatter(pred_landmarks[:, 0], pred_landmarks[:, 1], s=0.5, marker='.', c='r')
plt.pause(0.001) # pause a bit so that plots are updated
示例5: setup_mnist
# 需要導入模塊: from skimage import transform [as 別名]
# 或者: from skimage.transform import resize [as 別名]
def setup_mnist(self, img_res):
print ("Setting up MNIST...")
if not os.path.exists('datasets/mnist_x.npy'):
# Load the dataset
(mnist_X, mnist_y), (_, _) = mnist.load_data()
# Normalize and rescale images
mnist_X = self.normalize(mnist_X)
mnist_X = np.array([imresize(x, img_res) for x in mnist_X])
mnist_X = np.expand_dims(mnist_X, axis=-1)
mnist_X = np.repeat(mnist_X, 3, axis=-1)
self.mnist_X, self.mnist_y = mnist_X, mnist_y
# Save formatted images
np.save('datasets/mnist_x.npy', self.mnist_X)
np.save('datasets/mnist_y.npy', self.mnist_y)
else:
self.mnist_X = np.load('datasets/mnist_x.npy')
self.mnist_y = np.load('datasets/mnist_y.npy')
print ("+ Done.")
示例6: resize_image
# 需要導入模塊: from skimage import transform [as 別名]
# 或者: from skimage.transform import resize [as 別名]
def resize_image(image, max_dim):
"""
縮放圖像為正方形,指定長邊大小,短邊padding;
:param image: numpy 數組(H,W,3)
:param max_dim: 長邊大小
:return: 縮放後的圖像,元素圖像的寬口位置,縮放尺寸,padding
"""
image_dtype = image.dtype
h, w = image.shape[:2]
scale = max_dim / max(h, w) # 縮放尺寸
image = transform.resize(image, (round(h * scale), round(w * scale)),
order=1, mode='constant', cval=0, clip=True, preserve_range=True)
h, w = image.shape[:2]
# 計算padding
top_pad = (max_dim - h) // 2
bottom_pad = max_dim - h - top_pad
left_pad = (max_dim - w) // 2
right_pad = max_dim - w - left_pad
padding = [(top_pad, bottom_pad), (left_pad, right_pad), (0, 0)]
image = np.pad(image, padding, mode='constant', constant_values=0)
# 原始圖像在縮放圖像上的窗口位置
window = (top_pad, left_pad, h + top_pad, w + left_pad) #
return image.astype(image_dtype), window, scale, padding
示例7: get_data_from_id
# 需要導入模塊: from skimage import transform [as 別名]
# 或者: from skimage.transform import resize [as 別名]
def get_data_from_id(root, mode, id_):
"""
Returns:
- img_downsized: this is the image in 128px res.
- y_keypts: the keypts in range [0, 1]. To plot
these, multiply by 128., and overlay these on
img_downsized.
- z_keypts: the z keypoints normalised.
"""
img = imread("%s/%s_img/%s.jpg" % (root,mode,id_))
keypts = read_kpt_file("%s/%s_lm/%s_lm.csv" % (root,mode,id_))
# We want the img + keypts in 128x128px img so preproc them
# accordingly.
img_downsized = resize(img, (128,128))
y_keypts = np.copy(keypts)[:,0:2]
y_keypts[:,0] = y_keypts[:,0] / float(img.shape[1]) # x's
y_keypts[:,1] = y_keypts[:,1] / float(img.shape[0]) # y's
avg_sz = (img.shape[0]+img.shape[1]) / 2.
z_keypts = keypts[:,2] / avg_sz # what range??
return img_downsized, y_keypts, z_keypts
示例8: resize_image
# 需要導入模塊: from skimage import transform [as 別名]
# 或者: from skimage.transform import resize [as 別名]
def resize_image(img, new_size_typle, resize_method):
try:
from skimage import img_as_ubyte
from skimage.transform import resize
except ImportError:
logger.error(
' scikit-image is not installed. '
'In order to install all image feature dependencies run '
'pip install ludwig[image]'
)
sys.exit(-1)
if tuple(img.shape[:2]) != new_size_typle:
if resize_method == CROP_OR_PAD:
return crop_or_pad(img, new_size_typle)
elif resize_method == INTERPOLATE:
return img_as_ubyte(resize(img, new_size_typle))
raise ValueError(
'Invalid image resize method: {}'.format(resize_method))
return img
示例9: add_heat
# 需要導入模塊: from skimage import transform [as 別名]
# 或者: from skimage.transform import resize [as 別名]
def add_heat(image, heat_map, max_v, min_v, alpha=0.4, save=None, cmap='jet', axis='off'):
height = image.shape[0]
width = image.shape[1]
# resize heat map
heat_map_resized = transform.resize(heat_map, (height, width))
# normalize heat map
max_value = max_v
min_value = min_v
normalized_heat_map = (heat_map_resized - min_value) / (max_value - min_value)
# display
plt.imshow(image)
plt.imshow(255 * normalized_heat_map, alpha=alpha, cmap=cmap)
plt.axis(axis)
if save is not None:
plt.savefig(save, bbox_inches='tight', pad_inches=0)
示例10: add
# 需要導入模塊: from skimage import transform [as 別名]
# 或者: from skimage.transform import resize [as 別名]
def add(image, heat_map, alpha=0.6, display=False, save=None, cmap='viridis', axis='on', verbose=False):
height = image.shape[0]
width = image.shape[1]
# resize heat map
heat_map_resized = transform.resize(heat_map, (height, width))
# normalize heat map
max_value = np.max(heat_map_resized)
min_value = np.min(heat_map_resized)
normalized_heat_map = (heat_map_resized - min_value) / (max_value - min_value)
# display
plt.imshow(image)
plt.imshow(255 * normalized_heat_map, alpha=alpha, cmap=cmap)
plt.axis(axis)
if display:
plt.show()
if save is not None:
if verbose:
print('save image: ' + save)
plt.savefig(save, bbox_inches='tight', pad_inches=0)
示例11: work
# 需要導入模塊: from skimage import transform [as 別名]
# 或者: from skimage.transform import resize [as 別名]
def work(self, tensor):
"""
Resize the tensor
If the tensor is not in the range of [-1, 1], we will do the normalization automatically
Arg: tensor - The np.ndarray object. The tensor you want to deal with
Ret: The resized tensor
"""
# Normalize the tensor if needed
mean, std = -1, -1
min_v = np.min(tensor)
max_v = np.max(tensor)
if not (max_v <= 1 and min_v >= -1):
mean = 0.5 * max_v + 0.5 * min_v
std = 0.5 * max_v - 0.5 * min_v
# print(max_v, min_v, mean, std)
tensor = (tensor - mean) / std
# Work
tensor = transform.resize(tensor, self.output_size, mode = 'constant', order = 0)
# De-normalize the tensor
if mean != -1 and std != -1:
tensor = tensor * std + mean
return tensor
示例12: create_dataset
# 需要導入模塊: from skimage import transform [as 別名]
# 或者: from skimage.transform import resize [as 別名]
def create_dataset(paths, width_in, height_in, width_out, height_out, data_indexes, mat):
x = []
y = []
for path in tqdm(paths):
mat = scipy.io.loadmat(path)
img_tensor = mat['images']
fluid_tensor = mat['manualFluid1']
img_array = np.transpose(img_tensor, (2, 0 ,1)) / 255
img_array = resize(img_array, (img_array.shape[0], width_in, height_in))
fluid_array = np.transpose(fluid_tensor, (2, 0 ,1))
fluid_array = thresh(fluid_array)
fluid_array = resize(fluid_array, (fluid_array .shape[0], width_out, height_out))
for idx in data_indexes:
x += [np.expand_dims(img_array[idx], 0)]
y += [np.expand_dims(fluid_array[idx], 0)]
return np.array(x), np.array(y)
示例13: __getitem__
# 需要導入模塊: from skimage import transform [as 別名]
# 或者: from skimage.transform import resize [as 別名]
def __getitem__(self, idx):
image_pos = self.lines.ix[idx, 0]
image = io.imread(image_pos)
image = image.astype(np.float)
h,w = image.shape[:2]
if(h<w):
factor = h/350.0
w = w/factor
h = 350
else:
factor = w/350.0
h = h/factor
w = 350
image = transform.resize(image, (int(h), int(w), 3))
image_id = self.lines.ix[idx, 1]
sample = {'image': image, 'id': image_id}
if self.trans is not None:
sample = self.trans(sample)
return sample
示例14: handle_alphabet
# 需要導入模塊: from skimage import transform [as 別名]
# 或者: from skimage.transform import resize [as 別名]
def handle_alphabet(folder):
print('{}...'.format(folder.split('/')[-1]))
for rotate in [0, 90, 180, 270]:
# Create new folders for each augmented alphabet
mkdir(f'{folder}.{rotate}')
for root, character_folders, _ in os.walk(folder):
for character_folder in character_folders:
# For each character folder in an alphabet rotate and resize all of the images and save
# to the new folder
handle_characters(folder, root + '/' + character_folder, rotate)
# return
# Delete original alphabet
rmdir(folder)
# Clean up previous extraction
示例15: draw_seg
# 需要導入模塊: from skimage import transform [as 別名]
# 或者: from skimage.transform import resize [as 別名]
def draw_seg(self, img, seg_gt, segmentation, name):
"""Applies generated segmentation mask to an image"""
palette = np.load('Extra/palette.npy').tolist()
img_size = (img.shape[0], img.shape[1])
segmentation = imresize(segmentation, img_size, order=0, preserve_range=True).astype(int)
image = Image.fromarray((img * 255).astype('uint8'))
segmentation_draw = Image.fromarray((segmentation).astype('uint8'), 'P')
segmentation_draw.putpalette(palette)
segmentation_draw.save(self.directory + '/%s_segmentation.png' % name, 'PNG')
image.save(self.directory + '/%s.jpg' % name, 'JPEG')
if seg_gt:
seg_gt_draw = Image.fromarray((seg_gt).astype('uint8'), 'P')
seg_gt_draw.putpalette(palette)
seg_gt_draw.save(self.directory + '/%s_seg_gt.png' % name, 'PNG')