當前位置: 首頁>>代碼示例>>Python>>正文


Python transform.AffineTransform方法代碼示例

本文整理匯總了Python中skimage.transform.AffineTransform方法的典型用法代碼示例。如果您正苦於以下問題:Python transform.AffineTransform方法的具體用法?Python transform.AffineTransform怎麽用?Python transform.AffineTransform使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在skimage.transform的用法示例。


在下文中一共展示了transform.AffineTransform方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _prepare_images

# 需要導入模塊: from skimage import transform [as 別名]
# 或者: from skimage.transform import AffineTransform [as 別名]
def _prepare_images(path_out, im_size=IMAGE_SIZE):
    """ generate and prepare synth. images for registration

    :param str path_out: path to the folder
    :param tuple(int,int) im_size: desired image size
    :return tuple(str,str): paths to target and source image
    """
    image = resize(data.astronaut(), output_shape=im_size, mode='constant')
    img_target = random_noise(image, var=IMAGE_NOISE)
    path_img_target = os.path.join(path_out, NAME_IMAGE_TARGET)
    io.imsave(path_img_target, img_target)

    # warp synthetic image
    tform = AffineTransform(scale=(0.9, 0.9),
                            rotation=0.2,
                            translation=(200, -50))
    img_source = warp(image, tform.inverse, output_shape=im_size)
    img_source = random_noise(img_source, var=IMAGE_NOISE)
    path_img_source = os.path.join(path_out, NAME_IMAGE_SOURCE)
    io.imsave(path_img_source, img_source)
    return path_img_target, path_img_source 
開發者ID:Borda,項目名稱:BIRL,代碼行數:23,代碼來源:bm_comp_perform.py

示例2: get_affine_components

# 需要導入模塊: from skimage import transform [as 別名]
# 或者: from skimage.transform import AffineTransform [as 別名]
def get_affine_components(matrix):
    """ get the main components of Affine transform

    :param ndarray matrix: affine transformation matrix for 2d
    :return dict: dictionary of float values

    >>> mtx = np.array([[ -0.95,   0.1,  65.], [  0.1,   0.95, -60.], [  0.,   0.,   1.]])
    >>> import  pandas as pd
    >>> aff = pd.Series(get_affine_components(mtx)).sort_index()
    >>> aff  # doctest: +NORMALIZE_WHITESPACE +ELLIPSIS
    rotation                           173.9...
    scale                    (0.95..., 0.95...)
    shear                              -3.14...
    translation                   (65.0, -60.0)
    dtype: object
    """
    aff = AffineTransform(matrix)
    norm_rotation = norm_angle(np.rad2deg(aff.rotation), deg=True)
    comp = {
        'rotation': float(norm_rotation),
        'translation': tuple(aff.translation.tolist()),
        'scale': aff.scale,
        'shear': aff.shear,
    }
    return comp 
開發者ID:Borda,項目名稱:BIRL,代碼行數:27,代碼來源:registration.py

示例3: test_shear_x

# 需要導入模塊: from skimage import transform [as 別名]
# 或者: from skimage.transform import AffineTransform [as 別名]
def test_shear_x():
    image = np.random.randint(low=0, high=255, size=(4, 4, 3), dtype=np.uint8)
    color = tf.constant([255, 0, 255], tf.uint8)
    level = tf.random.uniform(shape=(), minval=0, maxval=1)

    tf_image = tf.constant(image)
    sheared_img = transform_ops.shear_x(tf_image, level, replace=color)
    transform_matrix = transform.AffineTransform(
        np.array([[1, level.numpy(), 0], [0, 1, 0], [0, 0, 1]])
    )
    expected_img = transform.warp(
        image, transform_matrix, order=0, cval=-1, preserve_range=True
    )

    mask = np.where(expected_img == -1)
    expected_img[mask[0], mask[1], :] = color

    np.testing.assert_equal(sheared_img.numpy(), expected_img)


# TODO: Parameterize on dtypes 
開發者ID:tensorflow,項目名稱:addons,代碼行數:23,代碼來源:transform_ops_test.py

示例4: test_shear_y

# 需要導入模塊: from skimage import transform [as 別名]
# 或者: from skimage.transform import AffineTransform [as 別名]
def test_shear_y():
    image = np.random.randint(low=0, high=255, size=(4, 4, 3), dtype=np.uint8)
    color = tf.constant([255, 0, 255], tf.dtypes.uint8)
    level = tf.random.uniform(shape=(), minval=0, maxval=1)

    tf_image = tf.constant(image)
    sheared_img = transform_ops.shear_y(image=tf_image, level=level, replace=color)
    transform_matrix = transform.AffineTransform(
        np.array([[1, 0, 0], [level.numpy(), 1, 0], [0, 0, 1]])
    )
    expected_img = transform.warp(
        image, transform_matrix, order=0, cval=-1, preserve_range=True
    )

    mask = np.where(expected_img == -1)
    expected_img[mask[0], mask[1], :] = color

    np.testing.assert_equal(sheared_img.numpy(), expected_img) 
開發者ID:tensorflow,項目名稱:addons,代碼行數:20,代碼來源:transform_ops_test.py

示例5: distort_affine_skimage

# 需要導入模塊: from skimage import transform [as 別名]
# 或者: from skimage.transform import AffineTransform [as 別名]
def distort_affine_skimage(image, rotation=10.0, shear=5.0, random_state=None):
    if random_state is None:
        random_state = np.random.RandomState(None)

    rot = np.deg2rad(np.random.uniform(-rotation, rotation))
    sheer = np.deg2rad(np.random.uniform(-shear, shear))

    shape = image.shape
    shape_size = shape[:2]
    center = np.float32(shape_size) / 2. - 0.5

    pre = transform.SimilarityTransform(translation=-center)
    affine = transform.AffineTransform(rotation=rot, shear=sheer, translation=center)
    tform = pre + affine

    distorted_image = transform.warp(image, tform.params, mode='reflect')

    return distorted_image.astype(np.float32) 
開發者ID:rwightman,項目名稱:tensorflow-litterbox,代碼行數:20,代碼來源:image_processing_common.py

示例6: __call__

# 需要導入模塊: from skimage import transform [as 別名]
# 或者: from skimage.transform import AffineTransform [as 別名]
def __call__(self, img):
        img_data = np.array(img)
        h, w, n_chan = img_data.shape
        scale_x = np.random.uniform(*self.scale_range)
        scale_y = np.random.uniform(*self.scale_range)
        scale = (scale_x, scale_y)
        rotation = np.random.uniform(*self.rotation_range)
        shear = np.random.uniform(*self.shear_range)
        translation = (
            np.random.uniform(*self.translation_range) * w,
            np.random.uniform(*self.translation_range) * h
        )
        af = AffineTransform(scale=scale, shear=shear, rotation=rotation,
                             translation=translation)
        img_data1 = warp(img_data, af.inverse)
        img1 = Image.fromarray(np.uint8(img_data1 * 255))
        return img1 
開發者ID:apsdehal,項目名稱:Face-Recognition,代碼行數:19,代碼來源:transforms.py

示例7: transform_img__

# 需要導入模塊: from skimage import transform [as 別名]
# 或者: from skimage.transform import AffineTransform [as 別名]
def transform_img__(self, img, fn, emotion):
        self.images[fn] = {'Image': img, 'Emotion': emotion}                                            # Store original
        counter = 0

        self.images["Trans" + str(counter) + "_" + fn] = {'Image': np.fliplr(img), 'Emotion': emotion}  # FLIP the image
        counter += 1

        for deg in range(-10, 15, 5):                                        # ROTATE to be robust to camera orientation
            if deg == 0:
                continue

            self.images["Trans" + str(counter) + "_" + fn] = {'Image': tf.rotate(img, deg), 'Emotion': emotion}
            counter += 1

        lenX, lenY = img.shape                                                           # CROP based on rough heuristic
        for crop_size in range(8, 14, 2):
            cropped = img[lenX / crop_size: - lenX / crop_size, lenY / crop_size: - lenY / crop_size]
            self.images["Trans" + str(counter) + "_" + fn] = {'Image': cropped, 'Emotion': emotion}
            counter += 1

        for i in range(2):                                           # SCALE down images (random factor btw 1.1 to 1.21)
            scale_factor = math.sqrt(1.1) ** np.random.randint(2, 5)
            scaled_img = tf.warp(img, tf.AffineTransform(scale=(scale_factor, scale_factor)))
            self.images["Trans" + str(counter) + "_" + fn] = {'Image': scaled_img, 'Emotion': emotion}
            counter += 1 
開發者ID:muxspace,項目名稱:facial_expressions,代碼行數:27,代碼來源:JN721.py

示例8: function

# 需要導入模塊: from skimage import transform [as 別名]
# 或者: from skimage.transform import AffineTransform [as 別名]
def function(self, x, y):

        signal2D = self.signal.data
        order = self.order
        d11 = self.d11.value
        d12 = self.d12.value
        d21 = self.d21.value
        d22 = self.d22.value
        t1 = self.t1.value
        t2 = self.t2.value

        D = np.array([[d11, d12, t1], [d21, d22, t2], [0.0, 0.0, 1.0]])

        shifty, shiftx = np.array(signal2D.shape[:2]) / 2

        shift = tf.SimilarityTransform(translation=[-shiftx, -shifty])
        tform = tf.AffineTransform(matrix=D)
        shift_inv = tf.SimilarityTransform(translation=[shiftx, shifty])

        transformed = tf.warp(
            signal2D, (shift + (tform + shift_inv)).inverse, order=order
        )

        return transformed 
開發者ID:pyxem,項目名稱:pyxem,代碼行數:26,代碼來源:scalable_reference_pattern.py

示例9: align_face

# 需要導入模塊: from skimage import transform [as 別名]
# 或者: from skimage.transform import AffineTransform [as 別名]
def align_face(self,
                   image,
                   face_rect, *,
                   dim=96,
                   border=0,
                   mask=FaceAlignMask.INNER_EYES_AND_BOTTOM_LIP):
        mask = np.array(mask.value)

        landmarks = self.get_landmarks(image, face_rect)
        proper_landmarks = border + dim * self.face_template[mask]
        A = np.hstack([landmarks[mask], np.ones((3, 1))]).astype(np.float64)
        B = np.hstack([proper_landmarks, np.ones((3, 1))]).astype(np.float64)
        T = np.linalg.solve(A, B).T

        wrapped = tr.warp(image,
                          tr.AffineTransform(T).inverse,
                          output_shape=(dim + 2 * border, dim + 2 * border),
                          order=3,
                          mode='constant',
                          cval=0,
                          clip=True,
                          preserve_range=True)

        return wrapped 
開發者ID:meownoid,項目名稱:face-identification-tpe,代碼行數:26,代碼來源:preprocessing.py

示例10: augment

# 需要導入模塊: from skimage import transform [as 別名]
# 或者: from skimage.transform import AffineTransform [as 別名]
def augment(
        rotation_fn=lambda: np.random.random_integers(0, 360),
        translation_fn=lambda: (np.random.random_integers(-20, 20), np.random.random_integers(-20, 20)),
        scale_factor_fn=random_zoom_range(),
        shear_fn=lambda: np.random.random_integers(-10, 10)
):
    def call(x):
        rotation = rotation_fn()
        translation = translation_fn()
        scale = scale_factor_fn()
        shear = shear_fn()

        tf_augment = AffineTransform(scale=scale, rotation=np.deg2rad(rotation), translation=translation, shear=np.deg2rad(shear))
        tf = tf_center + tf_augment + tf_uncenter

        x = warp(x, tf, order=1, preserve_range=True, mode='symmetric')

        return x

    return call 
開發者ID:mctigger,項目名稱:KagglePlanetPytorch,代碼行數:22,代碼來源:transforms.py

示例11: augment_deterministic

# 需要導入模塊: from skimage import transform [as 別名]
# 或者: from skimage.transform import AffineTransform [as 別名]
def augment_deterministic(
        rotation=0,
        translation=0,
        scale_factor=1,
        shear=0
):
    def call(x):
        scale = scale_factor, scale_factor
        rotation_tmp = rotation

        tf_augment = AffineTransform(
            scale=scale,
            rotation=np.deg2rad(rotation_tmp),
            translation=translation,
            shear=np.deg2rad(shear)
        )
        tf = tf_center + tf_augment + tf_uncenter

        x = warp(x, tf, order=1, preserve_range=True, mode='symmetric')

        return x

    return call 
開發者ID:mctigger,項目名稱:KagglePlanetPytorch,代碼行數:25,代碼來源:transforms.py

示例12: register_image_pair

# 需要導入模塊: from skimage import transform [as 別名]
# 或者: from skimage.transform import AffineTransform [as 別名]
def register_image_pair(idx, path_img_target, path_img_source, path_out):
    """ register two images together

    :param int idx: empty parameter for using the function in parallel
    :param str path_img_target: path to the target image
    :param str path_img_source: path to the source image
    :param str path_out: path for exporting the output
    :return tuple(str,float):
    """
    start = time.time()
    # load and denoise reference image
    img_target = io.imread(path_img_target)
    img_target = denoise_wavelet(img_target, wavelet_levels=7, multichannel=True)
    img_target_gray = rgb2gray(img_target)

    # load and denoise moving image
    img_source = io.imread(path_img_source)
    img_source = denoise_bilateral(img_source, sigma_color=0.05,
                                   sigma_spatial=2, multichannel=True)
    img_source_gray = rgb2gray(img_source)

    # detect ORB features on both images
    detector_target = ORB(n_keypoints=150)
    detector_source = ORB(n_keypoints=150)
    detector_target.detect_and_extract(img_target_gray)
    detector_source.detect_and_extract(img_source_gray)
    matches = match_descriptors(detector_target.descriptors,
                                detector_source.descriptors)
    # robustly estimate affine transform model with RANSAC
    model, _ = ransac((detector_target.keypoints[matches[:, 0]],
                       detector_source.keypoints[matches[:, 1]]),
                      AffineTransform, min_samples=25, max_trials=500,
                      residual_threshold=0.95)

    # warping source image with estimated transformations
    img_warped = warp(img_target, model.inverse, output_shape=img_target.shape[:2])
    path_img_warped = os.path.join(path_out, NAME_IMAGE_WARPED % idx)
    io.imsave(path_img_warped, img_warped)
    # summarise experiment
    execution_time = time.time() - start
    return path_img_warped, execution_time 
開發者ID:Borda,項目名稱:BIRL,代碼行數:43,代碼來源:bm_comp_perform.py

示例13: load_image

# 需要導入模塊: from skimage import transform [as 別名]
# 或者: from skimage.transform import AffineTransform [as 別名]
def load_image(filename):
    if filename in loaded_files:
        return loaded_files[filename]
    img = imageio.imread(filename, as_gray=True).astype(np.float)

    # Warp it to be reasonably squared
    tf = transform.AffineTransform(rotation=ROTATION, shear=SHEAR, translation=TRANSLATION)
    img = transform.warp(img, inverse_map=tf)

    # Normalize the whole image
    # img *= 1.0/(img.max() - img.min())
    img = (img - np.min(img))/np.ptp(img)

    # Normalize on a sigmoid curve to better separate ink from paper
    k = 10
    img = np.sqrt(1 / (1 + np.exp(k * (img - 0.5))))

    # imageio.imsave("chars_overstrike_rot.png", img)
    loaded_files[filename] = img
    return img


# Pull out the image of a character-pair, c1 overstruck with c2.
# The character at (x, y) should be the same as the character at (y, x) but due to printing may be slightly
# different.  We just analyze them all anyway, and it'll sort out in the final mapping.
# (Could double the performance by folding in half, but we don't care really) 
開發者ID:hughpyle,項目名稱:ASR33,代碼行數:28,代碼來源:prep_overstrike.py

示例14: __init__

# 需要導入模塊: from skimage import transform [as 別名]
# 或者: from skimage.transform import AffineTransform [as 別名]
def __init__(self):
        """Construct."""
        self.tform = AffineTransform()
        self.keypoints = {
                         'CHIN': (0, 1),
                         'UPPER_TEMPLE_L': (-1, -1),
                         'UPPER_TEMPLE_R': (1, -1),
                         'UPPERMOST_NOSE': (0, -1),
                         'MIDDLE_NOSTRIL': (0, 0)
                            } 
開發者ID:jankrepl,項目名稱:pychubby,代碼行數:12,代碼來源:reference.py

示例15: perform

# 需要導入模塊: from skimage import transform [as 別名]
# 或者: from skimage.transform import AffineTransform [as 別名]
def perform(self, lf):
        """Perform action.

        Parameters
        ----------
        lf : LandmarkFace
            Instance of a ``LandmarkFace`` before taking the action.

        Returns
        -------
        new_lf : LandmarkFace
            Instance of a ``LandmarkFace`` after taking the action.

        df : DisplacementField
            Displacement field representing the transformation between the old and new image.

        """
        # estimate reference space
        self.reference_space.estimate(lf)

        # transform reference space landmarks
        ref_points = self.reference_space.inp2ref(lf.points)

        tform = AffineTransform(
            scale=(self.scale_x, self.scale_y),
            rotation=self.rotation,
            shear=self.shear,
            translation=(self.translation_x, self.translation_y),
        )
        tformed_ref_points = tform(ref_points)

        # ref2inp
        tformed_inp_points = self.reference_space.ref2inp(tformed_ref_points)

        x_shifts = {i: (tformed_inp_points[i] - lf[i])[0] for i in range(68)}
        y_shifts = {i: (tformed_inp_points[i] - lf[i])[1] for i in range(68)}

        return AbsoluteMove(x_shifts=x_shifts, y_shifts=y_shifts).perform(lf) 
開發者ID:jankrepl,項目名稱:pychubby,代碼行數:40,代碼來源:actions.py


注:本文中的skimage.transform.AffineTransform方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。