當前位置: 首頁>>代碼示例>>Python>>正文


Python segmentation.mark_boundaries方法代碼示例

本文整理匯總了Python中skimage.segmentation.mark_boundaries方法的典型用法代碼示例。如果您正苦於以下問題:Python segmentation.mark_boundaries方法的具體用法?Python segmentation.mark_boundaries怎麽用?Python segmentation.mark_boundaries使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在skimage.segmentation的用法示例。


在下文中一共展示了segmentation.mark_boundaries方法的10個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: visualize

# 需要導入模塊: from skimage import segmentation [as 別名]
# 或者: from skimage.segmentation import mark_boundaries [as 別名]
def visualize(self, label_index):
    image, mask = self._exp.get_image_and_mask(
        label_index,
        positive_only=self._positive_only,
        num_features=self._num_features, hide_rest=False)
    fig = plt.figure()
    fig.suptitle('Image Column "%s"' % self._col_name, fontsize=16)
    plt.grid(False)
    plt.imshow(mark_boundaries(image, mask))
    plt.close(fig)
    IPython.display.display(fig) 
開發者ID:googledatalab,項目名稱:pydatalab,代碼行數:13,代碼來源:_ml.py

示例2: plot

# 需要導入模塊: from skimage import segmentation [as 別名]
# 或者: from skimage.segmentation import mark_boundaries [as 別名]
def plot(self, overlay_alpha=0.5):
        import pylab as pl
        #pl.imshow(self.image)
        tinted = ((1-overlay_alpha)*self.image
                  + overlay_alpha*colorize(np.argmax(self.features, 0), self.colors))
        from skimage.segmentation import mark_boundaries
        tinted = mark_boundaries(tinted.clip(0, 255).astype(np.uint8), np.argmax(self.features, 0))
        pl.imshow(tinted) 
開發者ID:jfemiani,項目名稱:facade-segmentation,代碼行數:10,代碼來源:model.py

示例3: MR_showsuperpixel

# 需要導入模塊: from skimage import segmentation [as 別名]
# 或者: from skimage.segmentation import mark_boundaries [as 別名]
def MR_showsuperpixel(self,img=None):
        if img == None:
            img = cv2.cvtColor(camera(),cv2.COLOR_RGB2BGR)
        img = self._MR_saliency__MR_readimg(img)
        labels = self._MR_saliency__MR_superpixel(img)

        plt.axis('off')
        plt.imshow(mark_boundaries(img,labels))
        plt.show() 
開發者ID:ruanxiang,項目名稱:mr_saliency,代碼行數:11,代碼來源:MR.py

示例4: visualise_overlap

# 需要導入模塊: from skimage import segmentation [as 別名]
# 或者: from skimage.segmentation import mark_boundaries [as 別名]
def visualise_overlap(path_img, path_seg, path_out,
                      b_img_scale=BOOL_IMAGE_RESCALE_INTENSITY,
                      b_img_contour=BOOL_SAVE_IMAGE_CONTOUR,
                      b_relabel=BOOL_ANNOT_RELABEL,
                      segm_alpha=MIDDLE_ALPHA_OVERLAP):
    img, _ = tl_data.load_image_2d(path_img)
    seg, _ = tl_data.load_image_2d(path_seg)

    # normalise alpha in range (0, 1)
    segm_alpha = tl_visu.norm_aplha(segm_alpha)

    if b_relabel:
        seg, _, _ = segmentation.relabel_sequential(seg)

    if img.ndim == 2:  # for gray images of ovary
        img = np.rollaxis(np.tile(img, (3, 1, 1)), 0, 3)

    if b_img_scale:
        p_low, p_high = np.percentile(img, q=(3, 98))
        # plt.imshow(255 - img, cmap='Greys')
        img = exposure.rescale_intensity(img, in_range=(p_low, p_high),
                                         out_range='uint8')

    if b_img_contour:
        path_im_visu = os.path.splitext(path_out)[0] + '_contour.png'
        img_contour = segmentation.mark_boundaries(img[:, :, :3], seg,
                                                   color=COLOR_CONTOUR, mode='subpixel')
        plt.imsave(path_im_visu, img_contour)
    # else:  # for colour images of disc
    #     mask = (np.sum(img, axis=2) == 0)
    #     img[mask] = [255, 255, 255]

    fig = tl_visu.figure_image_segm_results(img, seg, SIZE_SUB_FIGURE,
                                            mid_labels_alpha=segm_alpha,
                                            mid_image_gray=MIDDLE_IMAGE_GRAY)
    fig.savefig(path_out)
    plt.close(fig) 
開發者ID:Borda,項目名稱:pyImSegm,代碼行數:39,代碼來源:run_overlap_images_segms.py

示例5: superpixels

# 需要導入模塊: from skimage import segmentation [as 別名]
# 或者: from skimage.segmentation import mark_boundaries [as 別名]
def superpixels(im, maxsp=200, vis=False, redirect=False):
    """
    Get Slic Superpixels
    Input: im: (h,w,c) or (n,h,w,c): 0-255: np.uint8: RGB
    Output: sp: (h,w) or (n,h,w): 0-indexed regions, #regions <= maxsp
    """
    sTime = time.time()
    if im.ndim < 4:
        im = im[None, ...]
    sp = np.zeros(im.shape[:3], dtype=np.int)
    for i in range(im.shape[0]):
        # slic needs im: float in [0,1]
        sp[i] = slic(im[i].astype(np.float) / 255., n_segments=maxsp, sigma=5)
        if not redirect:
            sys.stdout.write('Superpixel computation: [% 5.1f%%]\r' %
                                (100.0 * float((i + 1) / im.shape[0])))
            sys.stdout.flush()
    eTime = time.time()
    print('Superpixel computation finished: %.2f s' % (eTime - sTime))

    if vis and False:
        # TODO: set directory to save
        from skimage.segmentation import mark_boundaries
        for i in range(im.shape[0]):
            Image.fromarray((mark_boundaries(im[i], sp[i]))).save('.jpg')

    if im.ndim < 4:
        return sp[0]
    return sp 
開發者ID:pathak22,項目名稱:videoseg,代碼行數:31,代碼來源:nlc.py

示例6: draw_image

# 需要導入模塊: from skimage import segmentation [as 別名]
# 或者: from skimage.segmentation import mark_boundaries [as 別名]
def draw_image(image, segmentation, adjacency, neighborhood):
    neighborhood = list(neighborhood)

    image = mark_boundaries(image, segmentation, (0, 0, 0))

    graph = nx.from_numpy_matrix(adjacency)

    segmentation += np.ones_like(segmentation)
    segments = regionprops(segmentation)

    # Save the centroids in the node properties.
    for (n, data), segment in zip(graph.nodes_iter(data=True), segments):
        data['centroid'] = segment['centroid']

    # Iterate over all edges and draw them.
    for n1, n2, data in graph.edges_iter(data=True):
        y1, x1 = map(int, graph.node[n1]['centroid'])
        y2, x2 = map(int, graph.node[n2]['centroid'])
        line = draw.line(y1, x1, y2, x2)

        n1_idx = neighborhood.index(n1) if n1 in neighborhood else -1
        n2_idx = neighborhood.index(n2) if n2 in neighborhood else -1
        if abs(n1_idx - n2_idx) == 1 and n1_idx != -1 and n2_idx != -1:
            image[line] = [1, 0, 0]
        else:
            image[line] = [0, 1, 0]

    # Draw a circle at the root node.
    for i in range(0, len(neighborhood)):
        if neighborhood[i] < 0:
            continue

        y1, x1 = graph.node[neighborhood[i]]['centroid']
        circle = draw.circle(y1, x1, 2)

        if i == 0:
            image[circle] = [1, 1, 0]
        else:
            j = (i-1)/(len(neighborhood) - 2)
            image[circle] = [j, j, j]

    return image 
開發者ID:rusty1s,項目名稱:graph-based-image-classification,代碼行數:44,代碼來源:segmentation.py

示例7: load_image_annot_compute_features_labels

# 需要導入模塊: from skimage import segmentation [as 別名]
# 或者: from skimage.segmentation import mark_boundaries [as 別名]
def load_image_annot_compute_features_labels(idx_row, params,
                                             show_debug_imgs=SHOW_DEBUG_IMAGES):
    """ load image and annotation, and compute superpixel features and labels

    :param (int, {...}) idx_row: row from table with paths
    :param dict params: segmentation parameters
    :param bool show_debug_imgs: whether show debug images
    :return (...):
    """
    def _path_out_img(params, dir_name, name):
        return os.path.join(params['path_exp'], dir_name, name + '.png')

    idx, row = idx_row
    idx_name = get_idx_name(idx, row['path_image'])
    img = load_image(row['path_image'], params['img_type'])
    annot = load_image(row['path_annot'], '2d_segm')
    logging.debug('.. processing: %s', idx_name)
    assert img.shape[:2] == annot.shape[:2], \
        'individual size of image %r and seg_pipe %r for "%s" - "%s"' % \
        (img.shape, annot.shape, row['path_image'], row['path_annot'])
    if show_debug_imgs:
        plt.imsave(_path_out_img(params, FOLDER_IMAGE, idx_name), img,
                   cmap=plt.cm.gray)
        plt.imsave(_path_out_img(params, FOLDER_ANNOT, idx_name), annot)

    # duplicate gray band to be as rgb
    # if img.ndim == 2:
    #     img = np.rollaxis(np.tile(img, (3, 1, 1)), 0, 3)
    slic = seg_spx.segment_slic_img2d(img, sp_size=params['slic_size'],
                                      relative_compact=params['slic_regul'])
    img = tl_data.convert_img_color_from_rgb(img, params.get('clr_space', 'rgb'))
    logging.debug('computed SLIC with %i labels', slic.max())
    if show_debug_imgs:
        img_rgb = use_rgb_image(img)
        img_slic = segmentation.mark_boundaries(img_rgb, slic,
                                                color=(1, 0, 0),
                                                mode='subpixel')
        plt.imsave(_path_out_img(params, FOLDER_SLIC, idx_name),
                   np.clip(img_slic, 0, 1))
    slic_label_hist = seg_label.histogram_regions_labels_norm(slic, annot)
    labels = np.argmax(slic_label_hist, axis=1)
    slic_annot = labels[slic]
    if show_debug_imgs:
        plt.imsave(_path_out_img(params, FOLDER_SLIC_ANNOT, idx_name),
                   np.clip(slic_annot, 0, slic_annot.max()))

    features, feature_names = seg_fts.compute_selected_features_img2d(
        img, slic, params['features'])
    return idx_name, img, annot, slic, features, labels, slic_label_hist, feature_names 
開發者ID:Borda,項目名稱:pyImSegm,代碼行數:51,代碼來源:run_segm_slic_classif_graphcut.py

示例8: figure_segm_graphcut_debug

# 需要導入模塊: from skimage import segmentation [as 別名]
# 或者: from skimage.segmentation import mark_boundaries [as 別名]
def figure_segm_graphcut_debug(images, subfig_size=9):
    """ creating subfigure with slic, graph edges and results in the first row
    and individual class unary terms in the second row

    :param dict images: dictionary composed from name and image array
    :param int subfig_size: maximal sub-figure size
    :return Figure:

    >>> images = {
    ...     'image': np.random.random((100, 150, 3)),
    ...     'slic': np.random.randint(0, 2, (100, 150)),
    ...     'slic_mean': np.random.random((100, 150, 3)),
    ...     'img_graph_edges': np.random.random((100, 150, 3)),
    ...     'img_graph_segm': np.random.random((100, 150, 3)),
    ...     'imgs_unary_cost': [np.random.random((100, 150, 3))],
    ... }
    >>> fig = figure_segm_graphcut_debug(images)
    >>> isinstance(fig, matplotlib.figure.Figure)
    True
    """
    assert all(n in images for n in [
        'image', 'slic', 'slic_mean', 'img_graph_edges', 'img_graph_segm', 'imgs_unary_cost'
    ]), 'missing keys in debug structure %r' % tuple(images.keys())
    nb_cols = max(3, len(images['imgs_unary_cost']))
    img = images['image']
    if img.ndim == 2:  # for gray images of ovary
        img = color.gray2rgb(img)
    norm_size = np.array(img.shape[:2]) / float(np.max(img.shape))

    fig_size = norm_size[::-1] * subfig_size * np.array([nb_cols, 2])
    fig, axarr = plt.subplots(2, nb_cols, figsize=fig_size)

    img_slic = segmentation.mark_boundaries(img, images['slic'],
                                            mode='subpixel')
    axarr[0, 0].set_title('SLIC')
    axarr[0, 0].imshow(img_slic)
    for i, k in enumerate(['img_graph_edges', 'img_graph_segm']):
        axarr[0, i + 1].set_title(k)
        axarr[0, i + 1].imshow(images[k])
    for i, im_uc in enumerate(images['imgs_unary_cost']):
        axarr[1, i].set_title('unary cost #%i' % i)
        axarr[1, i].imshow(im_uc)

    for j in range(2):
        for i in range(nb_cols):
            axarr[j, i].axis('off')
            axarr[j, i].axes.get_xaxis().set_ticklabels([])
            axarr[j, i].axes.get_yaxis().set_ticklabels([])
    fig.subplots_adjust(left=0, right=1, top=1, bottom=0,
                        wspace=0.05, hspace=0.05)
    return fig 
開發者ID:Borda,項目名稱:pyImSegm,代碼行數:53,代碼來源:drawing.py

示例9: draw_image_segm_points

# 需要導入模塊: from skimage import segmentation [as 別名]
# 或者: from skimage.segmentation import mark_boundaries [as 別名]
def draw_image_segm_points(ax, img, points, labels=None, slic=None,
                           color_slic='w', lut_label_marker=DICT_LABEL_MARKER,
                           seg_contour=None):
    """ on plane draw background image or segmentation, overlap with SLIC
     contours, add contour of adative segmentation like annot. for centers
     plot point with specific property (shape and colour) according label

    :param ax: figure axis
    :param ndarray img: image
    :param list(tuple(int,int)) points: collection of points
    :param list(int) labels: LUT labels for superpixels
    :param ndarray slic: superpixel segmentation
    :param str color_slic: color dor superpixels
    :param dict lut_label_marker: dictionary {int: (str, str)} of label and markers
    :param ndarray seg_contour: segmentation contour

    >>> img = np.random.randint(0, 256, (100, 100))
    >>> points = np.random.randint(0, 100, (25, 2))
    >>> labels = np.random.randint(0, 5, len(points))
    >>> slic = np.random.randint(0, 256, (100, 100))
    >>> draw_image_segm_points(plt.Figure().gca(), img, points, labels, slic)
    """
    # background image or segmentation
    if img.ndim == 2:
        ax.imshow(img, alpha=0.3, cmap=plt.cm.gist_earth)
    else:
        ax.imshow(img)

    if slic is not None:
        ax.contour(slic, levels=np.unique(slic), alpha=0.5, colors=color_slic,
                   linewidths=0.5)
    # fig.gca().imshow(mark_boundaries(img, slic))
    if seg_contour is not None and isinstance(seg_contour, np.ndarray):
        assert img.shape[:2] == seg_contour.shape[:2], \
            'image size %r and segm. %r should match' % (img.shape, seg_contour.shape)
        ax.contour(seg_contour, linewidths=3, levels=np.unique(seg_contour))
    if labels is not None:
        assert len(points) == len(labels), \
            'number of points (%i) and labels (%i) should match' \
            % (len(points), len(labels))
        for lb in lut_label_marker:
            marker, clr = lut_label_marker[lb]
            ax.plot(points[(labels == lb), 1], points[(labels == lb), 0],
                    marker, color=clr)
    else:
        ax.plot(points[:, 1], points[:, 0], 'o', color=COLOR_ORANGE)
    ax.set(xlim=[0, img.shape[1]], ylim=[img.shape[0], 0]) 
開發者ID:Borda,項目名稱:pyImSegm,代碼行數:49,代碼來源:drawing.py

示例10: show_segmented_image

# 需要導入模塊: from skimage import segmentation [as 別名]
# 或者: from skimage.segmentation import mark_boundaries [as 別名]
def show_segmented_image(self, test_img, modality='t1c', show = False):
        '''
        Creates an image of original brain with segmentation overlay
        INPUT   (1) str 'test_img': filepath to test image for segmentation, including file extension
                (2) str 'modality': imaging modelity to use as background. defaults to t1c. options: (flair, t1, t1c, t2)
                (3) bool 'show': If true, shows output image. defaults to False.
        OUTPUT  (1) if show is True, shows image of segmentation results
                (2) if show is false, returns segmented image.
        '''
        modes = {'flair':0, 't1':1, 't1c':2, 't2':3}

        segmentation = self.predict_image(test_img, show=False)
        img_mask = np.pad(segmentation, (16,16), mode='edge')
        ones = np.argwhere(img_mask == 1)
        twos = np.argwhere(img_mask == 2)
        threes = np.argwhere(img_mask == 3)
        fours = np.argwhere(img_mask == 4)

        test_im = io.imread(test_img)
        test_back = test_im.reshape(5,240,240)[-2]
        # overlay = mark_boundaries(test_back, img_mask)
        gray_img = img_as_float(test_back)

        # adjust gamma of image
        image = adjust_gamma(color.gray2rgb(gray_img), 0.65)
        sliced_image = image.copy()
        red_multiplier = [1, 0.2, 0.2]
        yellow_multiplier = [1,1,0.25]
        green_multiplier = [0.35,0.75,0.25]
        blue_multiplier = [0,0.25,0.9]

        # change colors of segmented classes
        for i in xrange(len(ones)):
            sliced_image[ones[i][0]][ones[i][1]] = red_multiplier
        for i in xrange(len(twos)):
            sliced_image[twos[i][0]][twos[i][1]] = green_multiplier
        for i in xrange(len(threes)):
            sliced_image[threes[i][0]][threes[i][1]] = blue_multiplier
        for i in xrange(len(fours)):
            sliced_image[fours[i][0]][fours[i][1]] = yellow_multiplier

        if show:
            io.imshow(sliced_image)
            plt.show()

        else:
            return sliced_image 
開發者ID:naldeborgh7575,項目名稱:brain_segmentation,代碼行數:49,代碼來源:Segmentation_Models.py


注:本文中的skimage.segmentation.mark_boundaries方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。