當前位置: 首頁>>代碼示例>>Python>>正文


Python segmentation.clear_border方法代碼示例

本文整理匯總了Python中skimage.segmentation.clear_border方法的典型用法代碼示例。如果您正苦於以下問題:Python segmentation.clear_border方法的具體用法?Python segmentation.clear_border怎麽用?Python segmentation.clear_border使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在skimage.segmentation的用法示例。


在下文中一共展示了segmentation.clear_border方法的5個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: generate_markers

# 需要導入模塊: from skimage import segmentation [as 別名]
# 或者: from skimage.segmentation import clear_border [as 別名]
def generate_markers(image):
    #Creation of the internal Marker
    marker_internal = image < -400
    marker_internal = segmentation.clear_border(marker_internal)
    marker_internal_labels = measure.label(marker_internal)
    areas = [r.area for r in measure.regionprops(marker_internal_labels)]
    areas.sort()
    if len(areas) > 2:
        for region in measure.regionprops(marker_internal_labels):
            if region.area < areas[-2]:
                for coordinates in region.coords:                
                       marker_internal_labels[coordinates[0], coordinates[1]] = 0
    marker_internal = marker_internal_labels > 0
    #Creation of the external Marker
    external_a = ndimage.binary_dilation(marker_internal, iterations=10)
    external_b = ndimage.binary_dilation(marker_internal, iterations=55)
    marker_external = external_b ^ external_a
    #Creation of the Watershed Marker matrix
    marker_watershed = np.zeros(image.shape, dtype=np.int)
    marker_watershed += marker_internal * 255
    marker_watershed += marker_external * 128
    return marker_internal, marker_external, marker_watershed 
開發者ID:Wrosinski,項目名稱:Kaggle-DSB,代碼行數:24,代碼來源:dsbowl_preprocess_2d.py

示例2: get_regions

# 需要導入模塊: from skimage import segmentation [as 別名]
# 或者: from skimage.segmentation import clear_border [as 別名]
def get_regions(slice_or_arr, fill_holes=False, clear_borders=True, threshold='otsu'):
    """Get the skimage regions of a black & white image."""
    if threshold == 'otsu':
        thresmeth = filters.threshold_otsu
    elif threshold == 'mean':
        thresmeth = np.mean
    if isinstance(slice_or_arr, Slice):
        edges = filters.scharr(slice_or_arr.image.array.astype(np.float))
        center = slice_or_arr.image.center
    elif isinstance(slice_or_arr, np.ndarray):
        edges = filters.scharr(slice_or_arr.astype(np.float))
        center = (int(edges.shape[1]/2), int(edges.shape[0]/2))
    edges = filters.gaussian(edges, sigma=1)
    if isinstance(slice_or_arr, Slice):
        box_size = 100/slice_or_arr.mm_per_pixel
        thres_img = edges[int(center.y-box_size):int(center.y+box_size),
                          int(center.x-box_size):int(center.x+box_size)]
        thres = thresmeth(thres_img)
    else:
        thres = thresmeth(edges)
    bw = edges > thres
    if clear_borders:
        segmentation.clear_border(bw, buffer_size=int(max(bw.shape)/50), in_place=True)
    if fill_holes:
        bw = ndimage.binary_fill_holes(bw)
    labeled_arr, num_roi = measure.label(bw, return_num=True)
    regionprops = measure.regionprops(labeled_arr, edges)
    return labeled_arr, regionprops, num_roi 
開發者ID:jrkerns,項目名稱:pylinac,代碼行數:30,代碼來源:ct.py

示例3: get_segmented_lungs

# 需要導入模塊: from skimage import segmentation [as 別名]
# 或者: from skimage.segmentation import clear_border [as 別名]
def get_segmented_lungs(im, plot=False):
    # Step 1: Convert into a binary image.
    binary = im < -400
    # Step 2: Remove the blobs connected to the border of the image.
    cleared = clear_border(binary)
    # Step 3: Label the image.
    label_image = label(cleared)
    # Step 4: Keep the labels with 2 largest areas.
    areas = [r.area for r in regionprops(label_image)]
    areas.sort()
    if len(areas) > 2:
        for region in regionprops(label_image):
            if region.area < areas[-2]:
                for coordinates in region.coords:
                       label_image[coordinates[0], coordinates[1]] = 0
    binary = label_image > 0
    # Step 5: Erosion operation with a disk of radius 2. This operation is seperate the lung nodules attached to the blood vessels.
    selem = disk(2)
    binary = binary_erosion(binary, selem)
    # Step 6: Closure operation with a disk of radius 10. This operation is    to keep nodules attached to the lung wall.
    selem = disk(10) # CHANGE BACK TO 10
    binary = binary_closing(binary, selem)
    # Step 7: Fill in the small holes inside the binary mask of lungs.
    edges = roberts(binary)
    binary = ndi.binary_fill_holes(edges)
    # Step 8: Superimpose the binary mask on the input image.
    get_high_vals = binary == 0
    im[get_high_vals] = -2000
    return im, binary 
開發者ID:juliandewit,項目名稱:kaggle_ndsb2017,代碼行數:31,代碼來源:helpers.py

示例4: find_disconnected_voxels

# 需要導入模塊: from skimage import segmentation [as 別名]
# 或者: from skimage.segmentation import clear_border [as 別名]
def find_disconnected_voxels(im, conn=None):
    r"""
    This identifies all pore (or solid) voxels that are not connected to the
    edge of the image.  This can be used to find blind pores, or remove
    artifacts such as solid phase voxels that are floating in space.

    Parameters
    ----------
    im : ND-image
        A Boolean image, with True values indicating the phase for which
        disconnected voxels are sought.

    conn : int
        For 2D the options are 4 and 8 for square and diagonal neighbors, while
        for the 3D the options are 6 and 26, similarily for square and diagonal
        neighbors.  The default is max

    Returns
    -------
    image : ND-array
        An ND-image the same size as ``im``, with True values indicating
        voxels of the phase of interest (i.e. True values in the original
        image) that are not connected to the outer edges.

    Notes
    -----
    image : ND-array
        The returned array (e.g. ``holes``) be used to trim blind pores from
        ``im`` using: ``im[holes] = False``

    """
    if im.ndim != im.squeeze().ndim:
        warnings.warn('Input image conains a singleton axis:' + str(im.shape) +
                      ' Reduce dimensionality with np.squeeze(im) to avoid' +
                      ' unexpected behavior.')
    if im.ndim == 2:
        if conn == 4:
            strel = disk(1)
        elif conn in [None, 8]:
            strel = square(3)
    elif im.ndim == 3:
        if conn == 6:
            strel = ball(1)
        elif conn in [None, 26]:
            strel = cube(3)
    labels, N = spim.label(input=im, structure=strel)
    holes = clear_border(labels=labels) > 0
    return holes 
開發者ID:PMEAL,項目名稱:porespy,代碼行數:50,代碼來源:__funcs__.py

示例5: apply_chords_3D

# 需要導入模塊: from skimage import segmentation [as 別名]
# 或者: from skimage.segmentation import clear_border [as 別名]
def apply_chords_3D(im, spacing=0, trim_edges=True):
    r"""
    Adds chords to the void space in all three principle directions.  The
    chords are seprated by 1 voxel plus the provided spacing.  Chords in the X,
    Y and Z directions are labelled 1, 2 and 3 resepctively.

    Parameters
    ----------
    im : ND-array
        A 3D image of the porous material with void space marked as True.

    spacing : int (default = 0)
        Chords are automatically separed by 1 voxel on all sides, and this
        argument increases the separation.

    trim_edges : bool (default is ``True``)
        Whether or not to remove chords that touch the edges of the image.
        These chords are artifically shortened, so skew the chord length
        distribution

    Returns
    -------
    image : ND-array
        A copy of ``im`` with values of 1 indicating x-direction chords,
        2 indicating y-direction chords, and 3 indicating z-direction chords.

    Notes
    -----
    The chords are separated by a spacing of at least 1 voxel so that tools
    that search for connected components, such as ``scipy.ndimage.label`` can
    detect individual chords.

    See Also
    --------
    apply_chords

    """
    if im.ndim != im.squeeze().ndim:
        warnings.warn('Input image conains a singleton axis:' + str(im.shape) +
                      ' Reduce dimensionality with np.squeeze(im) to avoid' +
                      ' unexpected behavior.')
    if im.ndim < 3:
        raise Exception('Must be a 3D image to use this function')
    if spacing < 0:
        raise Exception('Spacing cannot be less than 0')
    ch = np.zeros_like(im, dtype=int)
    ch[:, ::4+2*spacing, ::4+2*spacing] = 1  # X-direction
    ch[::4+2*spacing, :, 2::4+2*spacing] = 2  # Y-direction
    ch[2::4+2*spacing, 2::4+2*spacing, :] = 3  # Z-direction
    chords = ch*im
    if trim_edges:
        temp = clear_border(spim.label(chords > 0)[0]) > 0
        chords = temp*chords
    return chords 
開發者ID:PMEAL,項目名稱:porespy,代碼行數:56,代碼來源:__funcs__.py


注:本文中的skimage.segmentation.clear_border方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。