當前位置: 首頁>>代碼示例>>Python>>正文


Python morphology.remove_small_holes方法代碼示例

本文整理匯總了Python中skimage.morphology.remove_small_holes方法的典型用法代碼示例。如果您正苦於以下問題:Python morphology.remove_small_holes方法的具體用法?Python morphology.remove_small_holes怎麽用?Python morphology.remove_small_holes使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在skimage.morphology的用法示例。


在下文中一共展示了morphology.remove_small_holes方法的9個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: fillSmallHoles

# 需要導入模塊: from skimage import morphology [as 別名]
# 或者: from skimage.morphology import remove_small_holes [as 別名]
def fillSmallHoles(s, params):
    logging.info(f"{s['filename']} - \tfillSmallHoles")
    min_size = int(params.get("min_size", 64))
    img_reduced = morphology.remove_small_holes(s["img_mask_use"], min_size=min_size)
    img_small = img_reduced & np.invert(s["img_mask_use"])

    io.imsave(s["outdir"] + os.sep + s["filename"] + "_small_fill.png", img_as_ubyte(img_small))
    s["img_mask_small_removed"] = (img_small * 255) > 0

    prev_mask = s["img_mask_use"]
    s["img_mask_use"] = img_reduced

    s.addToPrintList("percent_small_tissue_filled",
                     printMaskHelper(params.get("mask_statistics", s["mask_statistics"]), prev_mask, s["img_mask_use"]))

    if len(s["img_mask_use"].nonzero()[0]) == 0:  # add warning in case the final tissue is empty
        logging.warning(f"{s['filename']} - After MorphologyModule.fillSmallHoles: NO tissue "
                        f"remains detectable! Downstream modules likely to be incorrect/fail")
        s["warnings"].append(f"After MorphologyModule.fillSmallHoles: NO tissue remains "
                             f"detectable! Downstream modules likely to be incorrect/fail")
    return 
開發者ID:choosehappy,項目名稱:HistoQC,代碼行數:23,代碼來源:MorphologyModule.py

示例2: wsh

# 需要導入模塊: from skimage import morphology [as 別名]
# 或者: from skimage.morphology import remove_small_holes [as 別名]
def wsh(mask_img, threshold, border_img, seeds):
    img_copy = np.copy(mask_img)
    m = seeds * border_img# * dt
    img_copy[m <= threshold + 0.35] = 0
    img_copy[m > threshold + 0.35] = 1
    img_copy = img_copy.astype(np.bool)
    img_copy = remove_small_objects(img_copy, 10).astype(np.uint8)

    mask_img[mask_img <= threshold] = 0
    mask_img[mask_img > threshold] = 1
    mask_img = mask_img.astype(np.bool)
    mask_img = remove_small_holes(mask_img, 1000)
    mask_img = remove_small_objects(mask_img, 8).astype(np.uint8)
    # cv2.imwrite('t.png', (mask_img * 255).astype(np.uint8))
    # cv2.imwrite('t2.png', (img_copy * 255).astype(np.uint8))
    labeled_array = my_watershed(mask_img, mask_img, img_copy)
    return labeled_array 
開發者ID:selimsef,項目名稱:dsb2018_topcoders,代碼行數:19,代碼來源:submit.py

示例3: remove_small_regions

# 需要導入模塊: from skimage import morphology [as 別名]
# 或者: from skimage.morphology import remove_small_holes [as 別名]
def remove_small_regions(img, size):
    """Morphologically removes small (less than size) connected regions of 0s or 1s."""
    img = morphology.remove_small_objects(img, size)
    img = morphology.remove_small_holes(img, size)
    return img 
開發者ID:SConsul,項目名稱:Global_Convolutional_Network,代碼行數:7,代碼來源:inferences.py

示例4: segment_watershed

# 需要導入模塊: from skimage import morphology [as 別名]
# 或者: from skimage.morphology import remove_small_holes [as 別名]
def segment_watershed(seg, centers, post_morph=False):
    """ perform watershed segmentation on input imsegm
    and optionally run some postprocessing using morphological operations

    :param ndarray seg: input image / segmentation
    :param [[int, int]] centers: position of centres / seeds
    :param bool post_morph: apply morphological postprocessing
    :return ndarray, [[int, int]]: resulting segmentation, updated centres
    """
    logging.debug('segment: watershed...')
    seg_binary = (seg > 0)
    seg_binary = ndimage.morphology.binary_fill_holes(seg_binary)
    # thr_area = int(0.05 * np.sum(seg_binary))
    # seg_binary = morphology.remove_small_holes(seg_binary, min_size=thr_area)
    distance = ndimage.distance_transform_edt(seg_binary)
    markers = np.zeros_like(seg)
    for i, pos in enumerate(centers):
        markers[int(pos[0]), int(pos[1])] = i + 1
    segm = morphology.watershed(-distance, markers, mask=seg_binary)

    # if morphological postprocessing was not selected, ends here
    if not post_morph:
        return segm, centers, None

    segm_clean = np.zeros_like(segm)
    for lb in range(1, np.max(segm) + 1):
        seg_lb = (segm == lb)
        # some morphology operartion for cleaning
        seg_lb = morphology.binary_closing(seg_lb, selem=morphology.disk(5))
        seg_lb = ndimage.morphology.binary_fill_holes(seg_lb)
        # thr_area = int(0.15 * np.sum(seg_lb))
        # seg_lb = morphology.remove_small_holes(seg_lb, min_size=thr_area)
        seg_lb = morphology.binary_opening(seg_lb, selem=morphology.disk(15))
        segm_clean[seg_lb] = lb
    return segm_clean, centers, None 
開發者ID:Borda,項目名稱:pyImSegm,代碼行數:37,代碼來源:run_ovary_egg-segmentation.py

示例5: segment_active_contour

# 需要導入模塊: from skimage import morphology [as 別名]
# 或者: from skimage.morphology import remove_small_holes [as 別名]
def segment_active_contour(img, centers):
    """ segmentation using acive contours

    :param ndarray img: input image / segmentation
    :param [[int, int]] centers: position of centres / seeds
    :return (ndarray, [[int, int]]): resulting segmentation, updated centres
    """
    logging.debug('segment: active_contour...')
    # http://scikit-image.org/docs/dev/auto_examples/edges/plot_active_contours.html
    segm = np.zeros(img.shape[:2])
    img_smooth = ndimage.filters.gaussian_filter(img, 5)
    center_circles, _, _ = create_circle_center(img.shape[:2], centers)
    for i, snake in enumerate(center_circles):
        snake = segmentation.active_contour(img_smooth, snake.astype(float),
                                            alpha=0.015, beta=10, gamma=0.001,
                                            w_line=0.0, w_edge=1.0,
                                            max_px_move=1.0,
                                            max_iterations=2500,
                                            convergence=0.2)
        seg = np.zeros(segm.shape, dtype=bool)
        x, y = np.array(snake).transpose().tolist()
        # rr, cc = draw.polygon(x, y)
        seg[map(int, x), map(int, y)] = True
        seg = morphology.binary_dilation(seg, selem=morphology.disk(3))
        bb_area = int((max(x) - min(x)) * (max(y) - min(y)))
        logging.debug('bounding box area: %d', bb_area)
        seg = morphology.remove_small_holes(seg, min_size=bb_area)
        segm[seg] = i + 1
    return segm, centers, None 
開發者ID:Borda,項目名稱:pyImSegm,代碼行數:31,代碼來源:run_ovary_egg-segmentation.py

示例6: remove_large_objects

# 需要導入模塊: from skimage import morphology [as 別名]
# 或者: from skimage.morphology import remove_small_holes [as 別名]
def remove_large_objects(img, max_size):
    # code taken from morphology.remove_small_holes, except switched < with >
    selem = ndi.generate_binary_structure(img.ndim, 1)
    ccs = np.zeros_like(img, dtype=np.int32)
    ndi.label(img, selem, output=ccs)
    component_sizes = np.bincount(ccs.ravel())
    too_big = component_sizes > max_size
    too_big_mask = too_big[ccs]
    img_out = img.copy()
    img_out[too_big_mask] = 0
    return img_out 
開發者ID:choosehappy,項目名稱:HistoQC,代碼行數:13,代碼來源:MorphologyModule.py

示例7: removeFatlikeTissue

# 需要導入模塊: from skimage import morphology [as 別名]
# 或者: from skimage.morphology import remove_small_holes [as 別名]
def removeFatlikeTissue(s, params):
    logging.info(f"{s['filename']} - \tremoveFatlikeTissue")
    fat_cell_size = int(params.get("fat_cell_size", 64))
    kernel_size = int(params.get("kernel_size", 3))
    max_keep_size = int(params.get("max_keep_size", 1000))

    img_reduced = morphology.remove_small_holes(s["img_mask_use"], min_size=fat_cell_size)
    img_small = img_reduced & np.invert(s["img_mask_use"])
    img_small = ~morphology.remove_small_holes(~img_small, min_size=9)

    mask_dilate = morphology.dilation(img_small, selem=np.ones((kernel_size, kernel_size)))
    mask_dilate_removed = remove_large_objects(mask_dilate, max_keep_size)

    mask_fat = mask_dilate & ~mask_dilate_removed

    io.imsave(s["outdir"] + os.sep + s["filename"] + "_fatlike.png", img_as_ubyte(mask_fat))
    s["img_mask_fatlike"] = (mask_fat * 255) > 0

    prev_mask = s["img_mask_use"]
    s["img_mask_use"] = prev_mask & ~mask_fat

    s.addToPrintList("percent_fatlike_tissue_removed",
                     printMaskHelper(params.get("mask_statistics", s["mask_statistics"]), prev_mask, s["img_mask_use"]))

    if len(s["img_mask_use"].nonzero()[0]) == 0:  # add warning in case the final tissue is empty
        logging.warning(f"{s['filename']} - After MorphologyModule.removeFatlikeTissue: NO tissue "
                        f"remains detectable! Downstream modules likely to be incorrect/fail")
        s["warnings"].append(f"After MorphologyModule.removeFatlikeTissue: NO tissue remains "
                             f"detectable! Downstream modules likely to be incorrect/fail") 
開發者ID:choosehappy,項目名稱:HistoQC,代碼行數:31,代碼來源:MorphologyModule.py

示例8: postprocess

# 需要導入模塊: from skimage import morphology [as 別名]
# 或者: from skimage.morphology import remove_small_holes [as 別名]
def postprocess(preds, config):
    assert preds.shape[2]==5
    ldelta = delta(preds[:,:,1:])
    #ldelta = delta0(preds[:,:,5:])
    connected = np.all(ldelta>config.GRADIENT_THRES, 2)
    base = connected * (preds[:,:,0]>config.MASK_THRES)
    
    wall = np.sum(np.abs(preds[:,:,1:]),axis = -1)   
    base_label = label(base) 
    vals, counts = np.unique(base_label[base_label>0], return_counts=True)
    for val in vals[(counts<config.CLIP_AREA_LOW)]:
        base_label[base_label==val]=0
    vals = vals[(counts>=config.CLIP_AREA_LOW)]

    for val in vals:
        
        label_mask = base_label == val   
        if np.sum(label_mask)==0:
            continue
        label_mask = remove_small_holes(label_mask)
        label_mask = basin(label_mask, wall)
        label_mask = remove_small_holes(label_mask)

        '''
        label_bdr = label_mask^binary_erosion(label_mask)
        min_wall = np.min(wall[label_mask])
        ave_bdr_wall = np.mean(wall[label_bdr])
        if ave_bdr_wall < min_wall + config.WALL_DEPTH:
            label_mask = 0
        '''
        base_label[label_mask] = val

    vals, counts = np.unique(base_label[base_label>0], return_counts=True)
    for val in vals[(counts<config.CLIP_AREA_LOW)]:
        base_label[base_label==val]=0        
    return base_label 
開發者ID:jacobkie,項目名稱:2018DSB,代碼行數:38,代碼來源:postprocess0.py

示例9: skeleton_transform

# 需要導入模塊: from skimage import morphology [as 別名]
# 或者: from skimage.morphology import remove_small_holes [as 別名]
def skeleton_transform(label, relabel=True):
    resolution = (1.0, 1.0)
    alpha = 1.0
    beta = 0.8

    if relabel == True: # run connected component
        label = morphology.label(label, background=0)
    
    label_id = np.unique(label)
    # print(np.unique(label_id))
    skeleton = np.zeros(label.shape, dtype=np.uint8)
    distance = np.zeros(label.shape, dtype=np.float32)
    Temp = np.zeros(label.shape, dtype=np.uint8)
    if len(label_id) == 1: # only one object within current volume
        if label_id[0] == 0:
            return distance, skeleton
        else:
            temp_id = label_id
    else:
        temp_id = label_id[1:]

    for idx in temp_id:
        temp1 = (label == idx)
        temp2 = morphology.remove_small_holes(temp1, 16, connectivity=1)

        #temp3 = erosion(temp2)
        temp3 = temp2.copy()
        Temp += temp3
        skeleton_mask = skeletonize(temp3).astype(np.uint8)
        skeleton += skeleton_mask

        skeleton_edt = ndimage.distance_transform_edt(
            1-skeleton_mask, resolution)
        dist_max = np.max(skeleton_edt*temp3)
        dist_max = np.clip(dist_max, a_min=2.0, a_max=None)
        skeleton_edt = skeleton_edt / (dist_max*alpha)
        skeleton_edt = skeleton_edt**(beta)

        reverse = 1.0-(skeleton_edt*temp3)
        distance += reverse*temp3

    # generate boundary
    distance[np.where(Temp == 0)] = -1.0

    return distance, skeleton 
開發者ID:zudi-lin,項目名稱:pytorch_connectomics,代碼行數:47,代碼來源:data_skeleton.py


注:本文中的skimage.morphology.remove_small_holes方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。