當前位置: 首頁>>代碼示例>>Python>>正文


Python morphology.binary_closing方法代碼示例

本文整理匯總了Python中skimage.morphology.binary_closing方法的典型用法代碼示例。如果您正苦於以下問題:Python morphology.binary_closing方法的具體用法?Python morphology.binary_closing怎麽用?Python morphology.binary_closing使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在skimage.morphology的用法示例。


在下文中一共展示了morphology.binary_closing方法的7個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: compute_binary_mask_lasseck

# 需要導入模塊: from skimage import morphology [as 別名]
# 或者: from skimage.morphology import binary_closing [as 別名]
def compute_binary_mask_lasseck(spectrogram, threshold):
    # normalize to [0, 1)
    norm_spectrogram = normalize(spectrogram)

    # median clipping
    binary_image = median_clipping(norm_spectrogram, threshold)

    # closing binary image (dilation followed by erosion)
    binary_image = morphology.binary_closing(binary_image, selem=np.ones((4, 4)))

    # dialate binary image
    binary_image = morphology.binary_dilation(binary_image, selem=np.ones((4, 4)))

    # apply median filter
    binary_image = filters.median(binary_image, selem=np.ones((2, 2)))

    # remove small objects
    binary_image = morphology.remove_small_objects(binary_image, min_size=32, connectivity=1)

    mask = np.array([np.max(col) for col in binary_image.T])
    mask = smooth_mask(mask)

    return mask


# TODO: This method needs some real testing 
開發者ID:johnmartinsson,項目名稱:bird-species-classification,代碼行數:28,代碼來源:preprocessing.py

示例2: clean_mask

# 需要導入模塊: from skimage import morphology [as 別名]
# 或者: from skimage.morphology import binary_closing [as 別名]
def clean_mask(m, c):
    # threshold
    m_thresh = threshold_otsu(m)
    c_thresh = threshold_otsu(c)
    m_b = m > m_thresh
    c_b = c > c_thresh

    # combine contours and masks and fill the cells
    m_ = np.where(m_b | c_b, 1, 0)
    m_ = ndi.binary_fill_holes(m_)

    # close what wasn't closed before
    area, radius = mean_blob_size(m_b)
    struct_size = int(1.25 * radius)
    struct_el = morph.disk(struct_size)
    m_padded = pad_mask(m_, pad=struct_size)
    m_padded = morph.binary_closing(m_padded, selem=struct_el)
    m_ = crop_mask(m_padded, crop=struct_size)

    # open to cut the real cells from the artifacts
    area, radius = mean_blob_size(m_b)
    struct_size = int(0.75 * radius)
    struct_el = morph.disk(struct_size)
    m_ = np.where(c_b & (~m_b), 0, m_)
    m_padded = pad_mask(m_, pad=struct_size)
    m_padded = morph.binary_opening(m_padded, selem=struct_el)
    m_ = crop_mask(m_padded, crop=struct_size)

    # join the connected cells with what we had at the beginning
    m_ = np.where(m_b | m_, 1, 0)
    m_ = ndi.binary_fill_holes(m_)

    # drop all the cells that weren't present at least in 25% of area in the initial mask
    m_ = drop_artifacts(m_, m_b, min_coverage=0.25)

    return m_ 
開發者ID:minerva-ml,項目名稱:open-solution-data-science-bowl-2018,代碼行數:38,代碼來源:postprocessing.py

示例3: refine_aseg

# 需要導入模塊: from skimage import morphology [as 別名]
# 或者: from skimage.morphology import binary_closing [as 別名]
def refine_aseg(aseg, ball_size=4):
    """
    Refine the ``aseg.mgz`` mask of Freesurfer.

    First step to reconcile ANTs' and FreeSurfer's brain masks.
    Here, the ``aseg.mgz`` mask from FreeSurfer is refined in two
    steps, using binary morphological operations:

      1. With a binary closing operation the sulci are included
         into the mask. This results in a smoother brain mask
         that does not exclude deep, wide sulci.

      2. Fill any holes (typically, there could be a hole next to
         the pineal gland and the corpora quadrigemina if the great
         cerebral brain is segmented out).

    """
    # Read aseg data
    bmask = aseg.copy()
    bmask[bmask > 0] = 1
    bmask = bmask.astype(np.uint8)

    # Morphological operations
    selem = sim.ball(ball_size)
    newmask = sim.binary_closing(bmask, selem)
    newmask = binary_fill_holes(newmask.astype(np.uint8), selem).astype(np.uint8)

    return newmask.astype(np.uint8) 
開發者ID:nipreps,項目名稱:niworkflows,代碼行數:30,代碼來源:freesurfer.py

示例4: segment_watershed

# 需要導入模塊: from skimage import morphology [as 別名]
# 或者: from skimage.morphology import binary_closing [as 別名]
def segment_watershed(seg, centers, post_morph=False):
    """ perform watershed segmentation on input imsegm
    and optionally run some postprocessing using morphological operations

    :param ndarray seg: input image / segmentation
    :param [[int, int]] centers: position of centres / seeds
    :param bool post_morph: apply morphological postprocessing
    :return ndarray, [[int, int]]: resulting segmentation, updated centres
    """
    logging.debug('segment: watershed...')
    seg_binary = (seg > 0)
    seg_binary = ndimage.morphology.binary_fill_holes(seg_binary)
    # thr_area = int(0.05 * np.sum(seg_binary))
    # seg_binary = morphology.remove_small_holes(seg_binary, min_size=thr_area)
    distance = ndimage.distance_transform_edt(seg_binary)
    markers = np.zeros_like(seg)
    for i, pos in enumerate(centers):
        markers[int(pos[0]), int(pos[1])] = i + 1
    segm = morphology.watershed(-distance, markers, mask=seg_binary)

    # if morphological postprocessing was not selected, ends here
    if not post_morph:
        return segm, centers, None

    segm_clean = np.zeros_like(segm)
    for lb in range(1, np.max(segm) + 1):
        seg_lb = (segm == lb)
        # some morphology operartion for cleaning
        seg_lb = morphology.binary_closing(seg_lb, selem=morphology.disk(5))
        seg_lb = ndimage.morphology.binary_fill_holes(seg_lb)
        # thr_area = int(0.15 * np.sum(seg_lb))
        # seg_lb = morphology.remove_small_holes(seg_lb, min_size=thr_area)
        seg_lb = morphology.binary_opening(seg_lb, selem=morphology.disk(15))
        segm_clean[seg_lb] = lb
    return segm_clean, centers, None 
開發者ID:Borda,項目名稱:pyImSegm,代碼行數:37,代碼來源:run_ovary_egg-segmentation.py

示例5: closing

# 需要導入模塊: from skimage import morphology [as 別名]
# 或者: from skimage.morphology import binary_closing [as 別名]
def closing(gray_img, kernel=None):
    """Wrapper for scikit-image closing functions. Opening can remove small dark spots (i.e. pepper).

    Inputs:
    gray_img = input image (grayscale or binary)
    kernel   = optional neighborhood, expressed as an array of 1s and 0s. If None, use cross-shaped structuring element.

    :param gray_img: ndarray
    :param kernel = ndarray
    :return filtered_img: ndarray
    """

    params.device += 1

    # Make sure the image is binary/grayscale
    if len(np.shape(gray_img)) != 2:
        fatal_error("Input image must be grayscale or binary")

    # If image is binary use the faster method
    if len(np.unique(gray_img)) == 2:
        bool_img = morphology.binary_closing(image=gray_img, selem=kernel)
        filtered_img = np.copy(bool_img.astype(np.uint8) * 255)
    # Otherwise use method appropriate for grayscale images
    else:
        filtered_img = morphology.closing(gray_img, kernel)

    if params.debug == 'print':
        print_image(filtered_img, os.path.join(params.debug_outdir, str(params.device) + '_opening' + '.png'))
    elif params.debug == 'plot':
        plot_image(filtered_img, cmap='gray')

    return filtered_img 
開發者ID:danforthcenter,項目名稱:plantcv,代碼行數:34,代碼來源:closing.py

示例6: get_segmented_lungs

# 需要導入模塊: from skimage import morphology [as 別名]
# 或者: from skimage.morphology import binary_closing [as 別名]
def get_segmented_lungs(im, plot=False):
    # Step 1: Convert into a binary image.
    binary = im < -400
    # Step 2: Remove the blobs connected to the border of the image.
    cleared = clear_border(binary)
    # Step 3: Label the image.
    label_image = label(cleared)
    # Step 4: Keep the labels with 2 largest areas.
    areas = [r.area for r in regionprops(label_image)]
    areas.sort()
    if len(areas) > 2:
        for region in regionprops(label_image):
            if region.area < areas[-2]:
                for coordinates in region.coords:
                       label_image[coordinates[0], coordinates[1]] = 0
    binary = label_image > 0
    # Step 5: Erosion operation with a disk of radius 2. This operation is seperate the lung nodules attached to the blood vessels.
    selem = disk(2)
    binary = binary_erosion(binary, selem)
    # Step 6: Closure operation with a disk of radius 10. This operation is    to keep nodules attached to the lung wall.
    selem = disk(10) # CHANGE BACK TO 10
    binary = binary_closing(binary, selem)
    # Step 7: Fill in the small holes inside the binary mask of lungs.
    edges = roberts(binary)
    binary = ndi.binary_fill_holes(edges)
    # Step 8: Superimpose the binary mask on the input image.
    get_high_vals = binary == 0
    im[get_high_vals] = -2000
    return im, binary 
開發者ID:juliandewit,項目名稱:kaggle_ndsb2017,代碼行數:31,代碼來源:helpers.py

示例7: _run_interface

# 需要導入模塊: from skimage import morphology [as 別名]
# 或者: from skimage.morphology import binary_closing [as 別名]
def _run_interface(self, runtime):

        in_files = self.inputs.in_files

        if self.inputs.enhance_t2:
            in_files = [_enhance_t2_contrast(f, newpath=runtime.cwd) for f in in_files]

        masknii = compute_epi_mask(
            in_files,
            lower_cutoff=self.inputs.lower_cutoff,
            upper_cutoff=self.inputs.upper_cutoff,
            connected=self.inputs.connected,
            opening=self.inputs.opening,
            exclude_zeros=self.inputs.exclude_zeros,
            ensure_finite=self.inputs.ensure_finite,
            target_affine=self.inputs.target_affine,
            target_shape=self.inputs.target_shape,
        )

        if self.inputs.closing:
            closed = sim.binary_closing(
                np.asanyarray(masknii.dataobj).astype(np.uint8), sim.ball(1)
            ).astype(np.uint8)
            masknii = masknii.__class__(closed, masknii.affine, masknii.header)

        if self.inputs.fill_holes:
            filled = binary_fill_holes(
                np.asanyarray(masknii.dataobj).astype(np.uint8), sim.ball(6)
            ).astype(np.uint8)
            masknii = masknii.__class__(filled, masknii.affine, masknii.header)

        if self.inputs.no_sanitize:
            in_file = self.inputs.in_files
            if isinstance(in_file, list):
                in_file = in_file[0]
            nii = nb.load(in_file)
            qform, code = nii.get_qform(coded=True)
            masknii.set_qform(qform, int(code))
            sform, code = nii.get_sform(coded=True)
            masknii.set_sform(sform, int(code))

        self._results["out_mask"] = fname_presuffix(
            self.inputs.in_files[0], suffix="_mask", newpath=runtime.cwd
        )
        masknii.to_filename(self._results["out_mask"])
        return runtime 
開發者ID:nipreps,項目名稱:niworkflows,代碼行數:48,代碼來源:nilearn.py


注:本文中的skimage.morphology.binary_closing方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。