本文整理匯總了Python中skimage.morphology.ball方法的典型用法代碼示例。如果您正苦於以下問題:Python morphology.ball方法的具體用法?Python morphology.ball怎麽用?Python morphology.ball使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類skimage.morphology
的用法示例。
在下文中一共展示了morphology.ball方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: dilate
# 需要導入模塊: from skimage import morphology [as 別名]
# 或者: from skimage.morphology import ball [as 別名]
def dilate(data, size, shape, dim=None):
"""
Dilate data using ball structuring element
:param data: Image or numpy array: 2d or 3d array
:param size: int: If shape={'square', 'cube'}: Corresponds to the length of an edge (size=1 has no effect).
If shape={'disk', 'ball'}: Corresponds to the radius, not including the center element (size=0 has no effect).
:param shape: {'square', 'cube', 'disk', 'ball'}
:param dim: {0, 1, 2}: Dimension of the array which 2D structural element will be orthogonal to. For example, if
you wish to apply a 2D disk kernel in the X-Y plane, leaving Z unaffected, parameters will be: shape=disk, dim=2.
:return: numpy array: data dilated
"""
if isinstance(data, Image):
im_out = data.copy()
im_out.data = dilate(data.data, size, shape, dim)
return im_out
else:
return dilation(data, selem=_get_selem(shape, size, dim), out=None)
示例2: erode
# 需要導入模塊: from skimage import morphology [as 別名]
# 或者: from skimage.morphology import ball [as 別名]
def erode(data, size, shape, dim=None):
"""
Dilate data using ball structuring element
:param data: Image or numpy array: 2d or 3d array
:param size: int: If shape={'square', 'cube'}: Corresponds to the length of an edge (size=1 has no effect).
If shape={'disk', 'ball'}: Corresponds to the radius, not including the center element (size=0 has no effect).
:param shape: {'square', 'cube', 'disk', 'ball'}
:param dim: {0, 1, 2}: Dimension of the array which 2D structural element will be orthogonal to. For example, if
you wish to apply a 2D disk kernel in the X-Y plane, leaving Z unaffected, parameters will be: shape=disk, dim=2.
:return: numpy array: data dilated
"""
if isinstance(data, Image):
im_out = data.copy()
im_out.data = erode(data.data, size, shape, dim)
return im_out
else:
return erosion(data, selem=_get_selem(shape, size, dim), out=None)
示例3: __call__
# 需要導入模塊: from skimage import morphology [as 別名]
# 或者: from skimage.morphology import ball [as 別名]
def __call__(self, **data_dict):
data = data_dict.get(self.key)
for b in range(data.shape[0]):
if np.random.uniform() < self.p_per_sample:
ch = deepcopy(self.channel_idx)
np.random.shuffle(ch)
for c in ch:
if np.random.uniform() < self.p_per_label:
operation = np.random.choice(self.any_of_these)
selem = ball(np.random.uniform(*self.strel_size))
workon = np.copy(data[b, c]).astype(int)
res = operation(workon, selem).astype(workon.dtype)
data[b, c] = res
# if class was added, we need to remove it in ALL other channels to keep one hot encoding
# properties
# we modify data
other_ch = [i for i in ch if i != c]
if len(other_ch) > 0:
was_added_mask = (res - workon) > 0
for oc in other_ch:
data[b, oc][was_added_mask] = 0
# if class was removed, leave it at background
data_dict[self.key] = data
return data_dict
示例4: ps_ball
# 需要導入模塊: from skimage import morphology [as 別名]
# 或者: from skimage.morphology import ball [as 別名]
def ps_ball(radius):
r"""
Creates spherical ball structuring element for morphological operations
Parameters
----------
radius : float or int
The desired radius of the structuring element
Returns
-------
strel : 3D-array
A 3D numpy array of the structuring element
"""
rad = int(np.ceil(radius))
other = np.ones((2 * rad + 1, 2 * rad + 1, 2 * rad + 1), dtype=bool)
other[rad, rad, rad] = False
ball = spim.distance_transform_edt(other) < radius
return ball
示例5: _get_selem
# 需要導入模塊: from skimage import morphology [as 別名]
# 或者: from skimage.morphology import ball [as 別名]
def _get_selem(shape, size, dim):
"""
Create structuring element of desired shape and radius
:param shape: str: Shape of the structuring element. See available options below in the code
:param size: int: size of the element.
:param dim: {0, 1, 2}: Dimension of the array which 2D structural element will be orthogonal to. For example, if
you wish to apply a 2D disk kernel in the X-Y plane, leaving Z unaffected, parameters will be: shape=disk, dim=2.
:return: numpy array: structuring element
"""
# TODO: enable custom selem
if shape == 'square':
selem = square(size)
elif shape == 'cube':
selem = cube(size)
elif shape == 'disk':
selem = disk(size)
elif shape == 'ball':
selem = ball(size)
else:
ValueError("This shape is not a valid entry: {}".format(shape))
if not (len(selem.shape) in [2, 3] and selem.shape[0] == selem.shape[1]):
raise ValueError("Invalid shape")
# If 2d kernel, replicate it along the specified dimension
if len(selem.shape) == 2:
selem3d = np.zeros([selem.shape[0]]*3)
imid = np.floor(selem.shape[0] / 2).astype(int)
if dim == 0:
selem3d[imid, :, :] = selem
elif dim == 1:
selem3d[:, imid, :] = selem
elif dim == 2:
selem3d[:, :, imid] = selem
else:
raise ValueError("dim can only take values: {0, 1, 2}")
selem = selem3d
return selem
示例6: _white_tophat
# 需要導入模塊: from skimage import morphology [as 別名]
# 或者: from skimage.morphology import ball [as 別名]
def _white_tophat(self, image: xr.DataArray) -> xr.DataArray:
if self.is_volume:
structuring_element = ball(self.masking_radius)
else:
structuring_element = disk(self.masking_radius)
return white_tophat(image, selem=structuring_element)
示例7: refine_aseg
# 需要導入模塊: from skimage import morphology [as 別名]
# 或者: from skimage.morphology import ball [as 別名]
def refine_aseg(aseg, ball_size=4):
"""
Refine the ``aseg.mgz`` mask of Freesurfer.
First step to reconcile ANTs' and FreeSurfer's brain masks.
Here, the ``aseg.mgz`` mask from FreeSurfer is refined in two
steps, using binary morphological operations:
1. With a binary closing operation the sulci are included
into the mask. This results in a smoother brain mask
that does not exclude deep, wide sulci.
2. Fill any holes (typically, there could be a hole next to
the pineal gland and the corpora quadrigemina if the great
cerebral brain is segmented out).
"""
# Read aseg data
bmask = aseg.copy()
bmask[bmask > 0] = 1
bmask = bmask.astype(np.uint8)
# Morphological operations
selem = sim.ball(ball_size)
newmask = sim.binary_closing(bmask, selem)
newmask = binary_fill_holes(newmask.astype(np.uint8), selem).astype(np.uint8)
return newmask.astype(np.uint8)
示例8: grow_mask
# 需要導入模塊: from skimage import morphology [as 別名]
# 或者: from skimage.morphology import ball [as 別名]
def grow_mask(anat, aseg, ants_segs=None, ww=7, zval=2.0, bw=4):
"""
Grow mask including pixels that have a high likelihood.
GM tissue parameters are sampled in image patches of ``ww`` size.
This is inspired on mindboggle's solution to the problem:
https://github.com/nipy/mindboggle/blob/master/mindboggle/guts/segment.py#L1660
"""
selem = sim.ball(bw)
if ants_segs is None:
ants_segs = np.zeros_like(aseg, dtype=np.uint8)
aseg[aseg == 42] = 3 # Collapse both hemispheres
gm = anat.copy()
gm[aseg != 3] = 0
refined = refine_aseg(aseg)
newrefmask = sim.binary_dilation(refined, selem) - refined
indices = np.argwhere(newrefmask > 0)
for pixel in indices:
# When ATROPOS identified the pixel as GM, set and carry on
if ants_segs[tuple(pixel)] == 2:
refined[tuple(pixel)] = 1
continue
window = gm[
pixel[0] - ww:pixel[0] + ww,
pixel[1] - ww:pixel[1] + ww,
pixel[2] - ww:pixel[2] + ww,
]
if np.any(window > 0):
mu = window[window > 0].mean()
sigma = max(window[window > 0].std(), 1.0e-5)
zstat = abs(anat[tuple(pixel)] - mu) / sigma
refined[tuple(pixel)] = int(zstat < zval)
refined = sim.binary_opening(refined, selem)
return refined
示例9: trim_small_clusters
# 需要導入模塊: from skimage import morphology [as 別名]
# 或者: from skimage.morphology import ball [as 別名]
def trim_small_clusters(im, size=1):
r"""
Remove isolated voxels or clusters smaller than a given size
Parameters
----------
im : ND-array
The binary image from which voxels are to be removed
size : scalar
The threshold size of clusters to trim. As clusters with this many
voxels or fewer will be trimmed. The default is 1 so only single
voxels are removed.
Returns
-------
im : ND-image
A copy of ``im`` with clusters of voxels smaller than the given
``size`` removed.
"""
if im.dims == 2:
strel = disk(1)
elif im.ndims == 3:
strel = ball(1)
else:
raise Exception('Only 2D or 3D images are accepted')
filtered_array = np.copy(im)
labels, N = spim.label(filtered_array, structure=strel)
id_sizes = np.array(spim.sum(im, labels, range(N + 1)))
area_mask = (id_sizes <= size)
filtered_array[area_mask[labels]] = 0
return filtered_array
示例10: test_morphology_fft_dilate_3D
# 需要導入模塊: from skimage import morphology [as 別名]
# 或者: from skimage.morphology import ball [as 別名]
def test_morphology_fft_dilate_3D(self):
im = self.im
truth = spim.binary_dilation(im, structure=ball(3))
test = ps.tools.fftmorphology(im, strel=ball(3), mode='dilation')
assert np.all(truth == test)
示例11: test_morphology_fft_erode_3D
# 需要導入模塊: from skimage import morphology [as 別名]
# 或者: from skimage.morphology import ball [as 別名]
def test_morphology_fft_erode_3D(self):
im = self.im
truth = spim.binary_erosion(im, structure=ball(3))
test = ps.tools.fftmorphology(im, strel=ball(3), mode='erosion')
assert np.all(truth == test)
示例12: test_morphology_fft_opening_3D
# 需要導入模塊: from skimage import morphology [as 別名]
# 或者: from skimage.morphology import ball [as 別名]
def test_morphology_fft_opening_3D(self):
im = self.im
truth = spim.binary_opening(im, structure=ball(3))
test = ps.tools.fftmorphology(im, strel=ball(3), mode='opening')
assert np.all(truth == test)
示例13: test_morphology_fft_closing_3D
# 需要導入模塊: from skimage import morphology [as 別名]
# 或者: from skimage.morphology import ball [as 別名]
def test_morphology_fft_closing_3D(self):
im = self.im
truth = spim.binary_closing(im, structure=ball(3))
test = ps.tools.fftmorphology(im, strel=ball(3), mode='closing')
assert np.all(truth == test)
示例14: _run_interface
# 需要導入模塊: from skimage import morphology [as 別名]
# 或者: from skimage.morphology import ball [as 別名]
def _run_interface(self, runtime):
in_files = self.inputs.in_files
if self.inputs.enhance_t2:
in_files = [_enhance_t2_contrast(f, newpath=runtime.cwd) for f in in_files]
masknii = compute_epi_mask(
in_files,
lower_cutoff=self.inputs.lower_cutoff,
upper_cutoff=self.inputs.upper_cutoff,
connected=self.inputs.connected,
opening=self.inputs.opening,
exclude_zeros=self.inputs.exclude_zeros,
ensure_finite=self.inputs.ensure_finite,
target_affine=self.inputs.target_affine,
target_shape=self.inputs.target_shape,
)
if self.inputs.closing:
closed = sim.binary_closing(
np.asanyarray(masknii.dataobj).astype(np.uint8), sim.ball(1)
).astype(np.uint8)
masknii = masknii.__class__(closed, masknii.affine, masknii.header)
if self.inputs.fill_holes:
filled = binary_fill_holes(
np.asanyarray(masknii.dataobj).astype(np.uint8), sim.ball(6)
).astype(np.uint8)
masknii = masknii.__class__(filled, masknii.affine, masknii.header)
if self.inputs.no_sanitize:
in_file = self.inputs.in_files
if isinstance(in_file, list):
in_file = in_file[0]
nii = nb.load(in_file)
qform, code = nii.get_qform(coded=True)
masknii.set_qform(qform, int(code))
sform, code = nii.get_sform(coded=True)
masknii.set_sform(sform, int(code))
self._results["out_mask"] = fname_presuffix(
self.inputs.in_files[0], suffix="_mask", newpath=runtime.cwd
)
masknii.to_filename(self._results["out_mask"])
return runtime
示例15: find_outer_region
# 需要導入模塊: from skimage import morphology [as 別名]
# 或者: from skimage.morphology import ball [as 別名]
def find_outer_region(im, r=0):
r"""
Finds regions of the image that are outside of the solid matrix.
This function uses the rolling ball method to define where the outer region
ends and the void space begins.
This function is particularly useful for samples that do not fill the
entire rectangular image, such as cylindrical cores or samples with non-
parallel faces.
Parameters
----------
im : ND-array
Image of the porous material with 1's for void and 0's for solid
r : scalar
The radius of the rolling ball to use. If not specified then a value
is calculated as twice maximum of the distance transform. The image
size is padded by this amount in all directions, so the image can
become quite large and unwieldy if too large a value is given.
Returns
-------
image : ND-array
A boolean mask the same shape as ``im``, containing True in all voxels
identified as *outside* the sample.
"""
if r == 0:
dt = spim.distance_transform_edt(input=im)
r = int(np.amax(dt)) * 2
im_padded = np.pad(array=im, pad_width=r, mode='constant',
constant_values=True)
dt = spim.distance_transform_edt(input=im_padded)
seeds = (dt >= r) + get_border(shape=im_padded.shape)
# Remove seeds not connected to edges
labels = spim.label(seeds)[0]
mask = labels == 1 # Assume label of 1 on edges, assured by adding border
dt = spim.distance_transform_edt(~mask)
outer_region = dt < r
outer_region = extract_subsection(im=outer_region, shape=im.shape)
return outer_region