當前位置: 首頁>>代碼示例>>Python>>正文


Python morphology.ball方法代碼示例

本文整理匯總了Python中skimage.morphology.ball方法的典型用法代碼示例。如果您正苦於以下問題:Python morphology.ball方法的具體用法?Python morphology.ball怎麽用?Python morphology.ball使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在skimage.morphology的用法示例。


在下文中一共展示了morphology.ball方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: dilate

# 需要導入模塊: from skimage import morphology [as 別名]
# 或者: from skimage.morphology import ball [as 別名]
def dilate(data, size, shape, dim=None):
    """
    Dilate data using ball structuring element
    :param data: Image or numpy array: 2d or 3d array
    :param size: int: If shape={'square', 'cube'}: Corresponds to the length of an edge (size=1 has no effect).
    If shape={'disk', 'ball'}: Corresponds to the radius, not including the center element (size=0 has no effect).
    :param shape: {'square', 'cube', 'disk', 'ball'}
    :param dim: {0, 1, 2}: Dimension of the array which 2D structural element will be orthogonal to. For example, if
    you wish to apply a 2D disk kernel in the X-Y plane, leaving Z unaffected, parameters will be: shape=disk, dim=2.
    :return: numpy array: data dilated
    """
    if isinstance(data, Image):
        im_out = data.copy()
        im_out.data = dilate(data.data, size, shape, dim)
        return im_out
    else:
        return dilation(data, selem=_get_selem(shape, size, dim), out=None) 
開發者ID:neuropoly,項目名稱:spinalcordtoolbox,代碼行數:19,代碼來源:math.py

示例2: erode

# 需要導入模塊: from skimage import morphology [as 別名]
# 或者: from skimage.morphology import ball [as 別名]
def erode(data, size, shape, dim=None):
    """
    Dilate data using ball structuring element
    :param data: Image or numpy array: 2d or 3d array
    :param size: int: If shape={'square', 'cube'}: Corresponds to the length of an edge (size=1 has no effect).
    If shape={'disk', 'ball'}: Corresponds to the radius, not including the center element (size=0 has no effect).
    :param shape: {'square', 'cube', 'disk', 'ball'}
    :param dim: {0, 1, 2}: Dimension of the array which 2D structural element will be orthogonal to. For example, if
    you wish to apply a 2D disk kernel in the X-Y plane, leaving Z unaffected, parameters will be: shape=disk, dim=2.
    :return: numpy array: data dilated
    """
    if isinstance(data, Image):
        im_out = data.copy()
        im_out.data = erode(data.data, size, shape, dim)
        return im_out
    else:
        return erosion(data, selem=_get_selem(shape, size, dim), out=None) 
開發者ID:neuropoly,項目名稱:spinalcordtoolbox,代碼行數:19,代碼來源:math.py

示例3: __call__

# 需要導入模塊: from skimage import morphology [as 別名]
# 或者: from skimage.morphology import ball [as 別名]
def __call__(self, **data_dict):
        data = data_dict.get(self.key)
        for b in range(data.shape[0]):
            if np.random.uniform() < self.p_per_sample:
                ch = deepcopy(self.channel_idx)
                np.random.shuffle(ch)
                for c in ch:
                    if np.random.uniform() < self.p_per_label:
                        operation = np.random.choice(self.any_of_these)
                        selem = ball(np.random.uniform(*self.strel_size))
                        workon = np.copy(data[b, c]).astype(int)
                        res = operation(workon, selem).astype(workon.dtype)
                        data[b, c] = res

                        # if class was added, we need to remove it in ALL other channels to keep one hot encoding
                        # properties
                        # we modify data
                        other_ch = [i for i in ch if i != c]
                        if len(other_ch) > 0:
                            was_added_mask = (res - workon) > 0
                            for oc in other_ch:
                                data[b, oc][was_added_mask] = 0
                            # if class was removed, leave it at background
        data_dict[self.key] = data
        return data_dict 
開發者ID:MIC-DKFZ,項目名稱:nnUNet,代碼行數:27,代碼來源:pyramid_augmentations.py

示例4: ps_ball

# 需要導入模塊: from skimage import morphology [as 別名]
# 或者: from skimage.morphology import ball [as 別名]
def ps_ball(radius):
    r"""
    Creates spherical ball structuring element for morphological operations

    Parameters
    ----------
    radius : float or int
        The desired radius of the structuring element

    Returns
    -------
    strel : 3D-array
        A 3D numpy array of the structuring element
    """
    rad = int(np.ceil(radius))
    other = np.ones((2 * rad + 1, 2 * rad + 1, 2 * rad + 1), dtype=bool)
    other[rad, rad, rad] = False
    ball = spim.distance_transform_edt(other) < radius
    return ball 
開發者ID:PMEAL,項目名稱:porespy,代碼行數:21,代碼來源:__funcs__.py

示例5: _get_selem

# 需要導入模塊: from skimage import morphology [as 別名]
# 或者: from skimage.morphology import ball [as 別名]
def _get_selem(shape, size, dim):
    """
    Create structuring element of desired shape and radius
    :param shape: str: Shape of the structuring element. See available options below in the code
    :param size: int: size of the element.
    :param dim: {0, 1, 2}: Dimension of the array which 2D structural element will be orthogonal to. For example, if
    you wish to apply a 2D disk kernel in the X-Y plane, leaving Z unaffected, parameters will be: shape=disk, dim=2.
    :return: numpy array: structuring element
    """
    # TODO: enable custom selem
    if shape == 'square':
        selem = square(size)
    elif shape == 'cube':
        selem = cube(size)
    elif shape == 'disk':
        selem = disk(size)
    elif shape == 'ball':
        selem = ball(size)
    else:
        ValueError("This shape is not a valid entry: {}".format(shape))

    if not (len(selem.shape) in [2, 3] and selem.shape[0] == selem.shape[1]):
        raise ValueError("Invalid shape")

    # If 2d kernel, replicate it along the specified dimension
    if len(selem.shape) == 2:
        selem3d = np.zeros([selem.shape[0]]*3)
        imid = np.floor(selem.shape[0] / 2).astype(int)
        if dim == 0:
            selem3d[imid, :, :] = selem
        elif dim == 1:
            selem3d[:, imid, :] = selem
        elif dim == 2:
            selem3d[:, :, imid] = selem
        else:
            raise ValueError("dim can only take values: {0, 1, 2}")
        selem = selem3d
    return selem 
開發者ID:neuropoly,項目名稱:spinalcordtoolbox,代碼行數:40,代碼來源:math.py

示例6: _white_tophat

# 需要導入模塊: from skimage import morphology [as 別名]
# 或者: from skimage.morphology import ball [as 別名]
def _white_tophat(self, image: xr.DataArray) -> xr.DataArray:
        if self.is_volume:
            structuring_element = ball(self.masking_radius)
        else:
            structuring_element = disk(self.masking_radius)
        return white_tophat(image, selem=structuring_element) 
開發者ID:spacetx,項目名稱:starfish,代碼行數:8,代碼來源:white_tophat.py

示例7: refine_aseg

# 需要導入模塊: from skimage import morphology [as 別名]
# 或者: from skimage.morphology import ball [as 別名]
def refine_aseg(aseg, ball_size=4):
    """
    Refine the ``aseg.mgz`` mask of Freesurfer.

    First step to reconcile ANTs' and FreeSurfer's brain masks.
    Here, the ``aseg.mgz`` mask from FreeSurfer is refined in two
    steps, using binary morphological operations:

      1. With a binary closing operation the sulci are included
         into the mask. This results in a smoother brain mask
         that does not exclude deep, wide sulci.

      2. Fill any holes (typically, there could be a hole next to
         the pineal gland and the corpora quadrigemina if the great
         cerebral brain is segmented out).

    """
    # Read aseg data
    bmask = aseg.copy()
    bmask[bmask > 0] = 1
    bmask = bmask.astype(np.uint8)

    # Morphological operations
    selem = sim.ball(ball_size)
    newmask = sim.binary_closing(bmask, selem)
    newmask = binary_fill_holes(newmask.astype(np.uint8), selem).astype(np.uint8)

    return newmask.astype(np.uint8) 
開發者ID:nipreps,項目名稱:niworkflows,代碼行數:30,代碼來源:freesurfer.py

示例8: grow_mask

# 需要導入模塊: from skimage import morphology [as 別名]
# 或者: from skimage.morphology import ball [as 別名]
def grow_mask(anat, aseg, ants_segs=None, ww=7, zval=2.0, bw=4):
    """
    Grow mask including pixels that have a high likelihood.

    GM tissue parameters are sampled in image patches of ``ww`` size.
    This is inspired on mindboggle's solution to the problem:
    https://github.com/nipy/mindboggle/blob/master/mindboggle/guts/segment.py#L1660

    """
    selem = sim.ball(bw)

    if ants_segs is None:
        ants_segs = np.zeros_like(aseg, dtype=np.uint8)

    aseg[aseg == 42] = 3  # Collapse both hemispheres
    gm = anat.copy()
    gm[aseg != 3] = 0

    refined = refine_aseg(aseg)
    newrefmask = sim.binary_dilation(refined, selem) - refined
    indices = np.argwhere(newrefmask > 0)
    for pixel in indices:
        # When ATROPOS identified the pixel as GM, set and carry on
        if ants_segs[tuple(pixel)] == 2:
            refined[tuple(pixel)] = 1
            continue

        window = gm[
            pixel[0] - ww:pixel[0] + ww,
            pixel[1] - ww:pixel[1] + ww,
            pixel[2] - ww:pixel[2] + ww,
        ]
        if np.any(window > 0):
            mu = window[window > 0].mean()
            sigma = max(window[window > 0].std(), 1.0e-5)
            zstat = abs(anat[tuple(pixel)] - mu) / sigma
            refined[tuple(pixel)] = int(zstat < zval)

    refined = sim.binary_opening(refined, selem)
    return refined 
開發者ID:nipreps,項目名稱:niworkflows,代碼行數:42,代碼來源:freesurfer.py

示例9: trim_small_clusters

# 需要導入模塊: from skimage import morphology [as 別名]
# 或者: from skimage.morphology import ball [as 別名]
def trim_small_clusters(im, size=1):
    r"""
    Remove isolated voxels or clusters smaller than a given size

    Parameters
    ----------
    im : ND-array
        The binary image from which voxels are to be removed
    size : scalar
        The threshold size of clusters to trim.  As clusters with this many
        voxels or fewer will be trimmed.  The default is 1 so only single
        voxels are removed.

    Returns
    -------
    im : ND-image
        A copy of ``im`` with clusters of voxels smaller than the given
        ``size`` removed.

    """
    if im.dims == 2:
        strel = disk(1)
    elif im.ndims == 3:
        strel = ball(1)
    else:
        raise Exception('Only 2D or 3D images are accepted')
    filtered_array = np.copy(im)
    labels, N = spim.label(filtered_array, structure=strel)
    id_sizes = np.array(spim.sum(im, labels, range(N + 1)))
    area_mask = (id_sizes <= size)
    filtered_array[area_mask[labels]] = 0
    return filtered_array 
開發者ID:PMEAL,項目名稱:porespy,代碼行數:34,代碼來源:__funcs__.py

示例10: test_morphology_fft_dilate_3D

# 需要導入模塊: from skimage import morphology [as 別名]
# 或者: from skimage.morphology import ball [as 別名]
def test_morphology_fft_dilate_3D(self):
        im = self.im
        truth = spim.binary_dilation(im, structure=ball(3))
        test = ps.tools.fftmorphology(im, strel=ball(3), mode='dilation')
        assert np.all(truth == test) 
開發者ID:PMEAL,項目名稱:porespy,代碼行數:7,代碼來源:test_filters.py

示例11: test_morphology_fft_erode_3D

# 需要導入模塊: from skimage import morphology [as 別名]
# 或者: from skimage.morphology import ball [as 別名]
def test_morphology_fft_erode_3D(self):
        im = self.im
        truth = spim.binary_erosion(im, structure=ball(3))
        test = ps.tools.fftmorphology(im, strel=ball(3), mode='erosion')
        assert np.all(truth == test) 
開發者ID:PMEAL,項目名稱:porespy,代碼行數:7,代碼來源:test_filters.py

示例12: test_morphology_fft_opening_3D

# 需要導入模塊: from skimage import morphology [as 別名]
# 或者: from skimage.morphology import ball [as 別名]
def test_morphology_fft_opening_3D(self):
        im = self.im
        truth = spim.binary_opening(im, structure=ball(3))
        test = ps.tools.fftmorphology(im, strel=ball(3), mode='opening')
        assert np.all(truth == test) 
開發者ID:PMEAL,項目名稱:porespy,代碼行數:7,代碼來源:test_filters.py

示例13: test_morphology_fft_closing_3D

# 需要導入模塊: from skimage import morphology [as 別名]
# 或者: from skimage.morphology import ball [as 別名]
def test_morphology_fft_closing_3D(self):
        im = self.im
        truth = spim.binary_closing(im, structure=ball(3))
        test = ps.tools.fftmorphology(im, strel=ball(3), mode='closing')
        assert np.all(truth == test) 
開發者ID:PMEAL,項目名稱:porespy,代碼行數:7,代碼來源:test_filters.py

示例14: _run_interface

# 需要導入模塊: from skimage import morphology [as 別名]
# 或者: from skimage.morphology import ball [as 別名]
def _run_interface(self, runtime):

        in_files = self.inputs.in_files

        if self.inputs.enhance_t2:
            in_files = [_enhance_t2_contrast(f, newpath=runtime.cwd) for f in in_files]

        masknii = compute_epi_mask(
            in_files,
            lower_cutoff=self.inputs.lower_cutoff,
            upper_cutoff=self.inputs.upper_cutoff,
            connected=self.inputs.connected,
            opening=self.inputs.opening,
            exclude_zeros=self.inputs.exclude_zeros,
            ensure_finite=self.inputs.ensure_finite,
            target_affine=self.inputs.target_affine,
            target_shape=self.inputs.target_shape,
        )

        if self.inputs.closing:
            closed = sim.binary_closing(
                np.asanyarray(masknii.dataobj).astype(np.uint8), sim.ball(1)
            ).astype(np.uint8)
            masknii = masknii.__class__(closed, masknii.affine, masknii.header)

        if self.inputs.fill_holes:
            filled = binary_fill_holes(
                np.asanyarray(masknii.dataobj).astype(np.uint8), sim.ball(6)
            ).astype(np.uint8)
            masknii = masknii.__class__(filled, masknii.affine, masknii.header)

        if self.inputs.no_sanitize:
            in_file = self.inputs.in_files
            if isinstance(in_file, list):
                in_file = in_file[0]
            nii = nb.load(in_file)
            qform, code = nii.get_qform(coded=True)
            masknii.set_qform(qform, int(code))
            sform, code = nii.get_sform(coded=True)
            masknii.set_sform(sform, int(code))

        self._results["out_mask"] = fname_presuffix(
            self.inputs.in_files[0], suffix="_mask", newpath=runtime.cwd
        )
        masknii.to_filename(self._results["out_mask"])
        return runtime 
開發者ID:nipreps,項目名稱:niworkflows,代碼行數:48,代碼來源:nilearn.py

示例15: find_outer_region

# 需要導入模塊: from skimage import morphology [as 別名]
# 或者: from skimage.morphology import ball [as 別名]
def find_outer_region(im, r=0):
    r"""
    Finds regions of the image that are outside of the solid matrix.

    This function uses the rolling ball method to define where the outer region
    ends and the void space begins.

    This function is particularly useful for samples that do not fill the
    entire rectangular image, such as cylindrical cores or samples with non-
    parallel faces.

    Parameters
    ----------
    im : ND-array
        Image of the porous material with 1's for void and 0's for solid

    r : scalar
        The radius of the rolling ball to use.  If not specified then a value
        is calculated as twice maximum of the distance transform.  The image
        size is padded by this amount in all directions, so the image can
        become quite large and unwieldy if too large a value is given.

    Returns
    -------
    image : ND-array
        A boolean mask the same shape as ``im``, containing True in all voxels
        identified as *outside* the sample.

    """
    if r == 0:
        dt = spim.distance_transform_edt(input=im)
        r = int(np.amax(dt)) * 2
    im_padded = np.pad(array=im, pad_width=r, mode='constant',
                       constant_values=True)
    dt = spim.distance_transform_edt(input=im_padded)
    seeds = (dt >= r) + get_border(shape=im_padded.shape)
    # Remove seeds not connected to edges
    labels = spim.label(seeds)[0]
    mask = labels == 1  # Assume label of 1 on edges, assured by adding border
    dt = spim.distance_transform_edt(~mask)
    outer_region = dt < r
    outer_region = extract_subsection(im=outer_region, shape=im.shape)
    return outer_region 
開發者ID:PMEAL,項目名稱:porespy,代碼行數:45,代碼來源:__funcs__.py


注:本文中的skimage.morphology.ball方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。