本文整理匯總了Python中skimage.measure方法的典型用法代碼示例。如果您正苦於以下問題:Python skimage.measure方法的具體用法?Python skimage.measure怎麽用?Python skimage.measure使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類skimage
的用法示例。
在下文中一共展示了skimage.measure方法的4個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: measure_registration_single
# 需要導入模塊: import skimage [as 別名]
# 或者: from skimage import measure [as 別名]
def measure_registration_single(path_out, nb_iter=5):
""" measure mean execration time for image registration running in 1 thread
:param str path_out: path to the temporary output space
:param int nb_iter: number of experiments to be averaged
:return dict: dictionary of float values results
"""
path_img_target, path_img_source = _prepare_images(path_out, IMAGE_SIZE)
paths = [path_img_target, path_img_source]
execution_times = []
for i in tqdm.tqdm(range(nb_iter), desc='using single-thread'):
path_img_warped, t = register_image_pair(i, path_img_target,
path_img_source,
path_out)
paths.append(path_img_warped)
execution_times.append(t)
_clean_images(set(paths))
logging.info('registration @1-thread: %f +/- %f',
np.mean(execution_times), np.std(execution_times))
res = {'registration @1-thread': np.mean(execution_times)}
return res
示例2: generate_markers
# 需要導入模塊: import skimage [as 別名]
# 或者: from skimage import measure [as 別名]
def generate_markers(image):
#Creation of the internal Marker
marker_internal = image < -400
marker_internal = segmentation.clear_border(marker_internal)
marker_internal_labels = measure.label(marker_internal)
areas = [r.area for r in measure.regionprops(marker_internal_labels)]
areas.sort()
if len(areas) > 2:
for region in measure.regionprops(marker_internal_labels):
if region.area < areas[-2]:
for coordinates in region.coords:
marker_internal_labels[coordinates[0], coordinates[1]] = 0
marker_internal = marker_internal_labels > 0
#Creation of the external Marker
external_a = ndimage.binary_dilation(marker_internal, iterations=10)
external_b = ndimage.binary_dilation(marker_internal, iterations=55)
marker_external = external_b ^ external_a
#Creation of the Watershed Marker matrix
marker_watershed = np.zeros(image.shape, dtype=np.int)
marker_watershed += marker_internal * 255
marker_watershed += marker_external * 128
return marker_internal, marker_external, marker_watershed
示例3: measure_registration_parallel
# 需要導入模塊: import skimage [as 別名]
# 或者: from skimage import measure [as 別名]
def measure_registration_parallel(path_out, nb_iter=3, nb_workers=CPU_COUNT):
""" measure mean execration time for image registration running in N thread
:param str path_out: path to the temporary output space
:param int nb_iter: number of experiments to be averaged
:param int nb_workers: number of thread available on the computer
:return dict: dictionary of float values results
"""
path_img_target, path_img_source = _prepare_images(path_out, IMAGE_SIZE)
paths = [path_img_target, path_img_source]
execution_times = []
_regist = partial(register_image_pair, path_img_target=path_img_target,
path_img_source=path_img_source, path_out=path_out)
nb_tasks = int(nb_workers * nb_iter)
logging.info('>> running %i tasks in %i threads', nb_tasks, nb_workers)
tqdm_bar = tqdm.tqdm(total=nb_tasks, desc='parallel @ %i threads' % nb_workers)
pool = mproc.Pool(nb_workers)
for path_img_warped, t in pool.map(_regist, (range(nb_tasks))):
paths.append(path_img_warped)
execution_times.append(t)
tqdm_bar.update()
pool.close()
pool.join()
tqdm_bar.close()
_clean_images(set(paths))
logging.info('registration @%i-thread: %f +/- %f', nb_workers,
np.mean(execution_times), np.std(execution_times))
res = {'registration @n-thread': np.mean(execution_times)}
return res
示例4: get_masks
# 需要導入模塊: import skimage [as 別名]
# 或者: from skimage import measure [as 別名]
def get_masks(img, n_seg=250):
logger.debug('SLIC segmentation initialised')
segments = skimage.segmentation.slic(img, n_segments=n_seg, compactness=10, sigma=1)
logger.debug('SLIC segmentation complete')
logger.debug('contour extraction...')
masks = [[numpy.zeros((img.shape[0], img.shape[1]), dtype=numpy.uint8), None]]
for region in skimage.measure.regionprops(segments):
masks.append([masks[0][0].copy(), region.bbox])
x_min, y_min, x_max, y_max = region.bbox
masks[-1][0][x_min:x_max, y_min:y_max] = skimage.img_as_ubyte(region.convex_image)
logger.debug('contours extracted')
return masks[1:]