本文整理匯總了Python中skimage.io.imsave方法的典型用法代碼示例。如果您正苦於以下問題:Python io.imsave方法的具體用法?Python io.imsave怎麽用?Python io.imsave使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類skimage.io
的用法示例。
在下文中一共展示了io.imsave方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: predict_dataset
# 需要導入模塊: from skimage import io [as 別名]
# 或者: from skimage.io import imsave [as 別名]
def predict_dataset(self, dataset, export_path):
"""
Predicts the images in the given dataset and saves it to disk.
Args:
dataset: the dataset of images to be exported, instance of unet.dataset.Image2D
export_path: path to folder where results to be saved
"""
self.net.train(False)
chk_mkdir(export_path)
for batch_idx, (X_batch, *rest) in enumerate(DataLoader(dataset, batch_size=1)):
if isinstance(rest[0][0], str):
image_filename = rest[0][0]
else:
image_filename = '%s.png' % str(batch_idx + 1).zfill(3)
X_batch = Variable(X_batch.to(device=self.device))
y_out = self.net(X_batch).cpu().data.numpy()
io.imsave(os.path.join(export_path, image_filename), y_out[0, 1, :, :])
示例2: _prepare_images
# 需要導入模塊: from skimage import io [as 別名]
# 或者: from skimage.io import imsave [as 別名]
def _prepare_images(path_out, im_size=IMAGE_SIZE):
""" generate and prepare synth. images for registration
:param str path_out: path to the folder
:param tuple(int,int) im_size: desired image size
:return tuple(str,str): paths to target and source image
"""
image = resize(data.astronaut(), output_shape=im_size, mode='constant')
img_target = random_noise(image, var=IMAGE_NOISE)
path_img_target = os.path.join(path_out, NAME_IMAGE_TARGET)
io.imsave(path_img_target, img_target)
# warp synthetic image
tform = AffineTransform(scale=(0.9, 0.9),
rotation=0.2,
translation=(200, -50))
img_source = warp(image, tform.inverse, output_shape=im_size)
img_source = random_noise(img_source, var=IMAGE_NOISE)
path_img_source = os.path.join(path_out, NAME_IMAGE_SOURCE)
io.imsave(path_img_source, img_source)
return path_img_target, path_img_source
示例3: convertToGrayScale
# 需要導入模塊: from skimage import io [as 別名]
# 或者: from skimage.io import imsave [as 別名]
def convertToGrayScale (rootDir, dirNames):
nbConverted = 0
for root, dirs, files in os.walk(rootDir):
files.sort(key=tryint)
for file in files:
parentDir = os.path.basename(root)
fname = os.path.splitext(file)[0] # no path, no extension. only filename
if parentDir in dirNames:
# convert all images in here to grayscale, store to dirName_gray
newDirPath = ''.join([os.path.dirname(root), os.sep, parentDir + "_gray"])
newFilePath = ''.join([newDirPath, os.sep, fname + "_gray.jpg"])
if not os.path.exists(newDirPath):
os.makedirs(newDirPath)
if not os.path.exists(newFilePath):
# read in grayscale, write to new path
# with OpenCV: weird results (gray image larger than color ?!?)
# img = cv2.imread(root+os.sep+file, 0)
# cv2.imwrite(newFilePath, img)
img_gray = rgb2gray(io.imread(root + os.sep + file))
io.imsave(newFilePath, img_gray) # don't write to disk if already exists
nbConverted += 1
# print(nbConverted, " files have been converted to Grayscale")
return 0
示例4: colorize
# 需要導入模塊: from skimage import io [as 別名]
# 或者: from skimage.io import imsave [as 別名]
def colorize():
path = './img/colorize/colorize2.png'
# cv2.imwrite('./img/colorize3.png', cv2.imread(path, 0))
x, y, image_shape = get_train_data(path)
model = build_model()
model.load_weights('./data/simple_colorize.h5')
output = model.predict(x)
output *= 128
tmp = np.zeros((200, 200, 3))
tmp[:, :, 0] = x[0][:, :, 0]
tmp[:, :, 1:] = output[0]
colorizePath = path.replace(".png", "-res.png")
imsave(colorizePath, lab2rgb(tmp))
cv2.imshow("I", cv2.imread(path))
cv2.imshow("II", cv2.imread(colorizePath))
cv2.waitKey(0)
cv2.destroyAllWindows()
# imsave("test_image_gray.png", rgb2gray(lab2rgb(tmp)))
示例5: save_img
# 需要導入模塊: from skimage import io [as 別名]
# 或者: from skimage.io import imsave [as 別名]
def save_img(file_name, img):
from skimage import io
if isinstance(img, Variable):
img = img.data.cpu().numpy()
if len(img.shape) == 4:
img = img.squeeze(0)
# scipy expects shape (W, H, 3)
if img.shape[0] == 3:
img = img.transpose(2, 1, 0)
img = img.clip(0, 255)
img = img.astype(np.uint8)
io.imsave(file_name, img)
示例6: generate_copy
# 需要導入模塊: from skimage import io [as 別名]
# 或者: from skimage.io import imsave [as 別名]
def generate_copy(images, boxes, out):
global num_adfree
if num_adfree < MAX_NUM_ADFREE:
num_adfree += len(images)
else:
logger.info("Created enough ADFREE")
return
if boxes:
logger.error("%s has boxes that should be replaced ... skipped", out)
return
logger.info("Copying %s", out)
tmp_out = '{}-copy'.format(out)
annotation_path = os.path.join(ANNOTATION_PATH, tmp_out + '.txt')
image_path = os.path.join(IMAGES_PATH, tmp_out + '.png')
with open(annotation_path, 'w+') as f:
f.write('')
try:
io.imsave(image_path, images[0])
logger.info("Saved %s", tmp_out)
except ValueError:
logger.error("Failed to save %s", image_path)
示例7: rotate_images
# 需要導入模塊: from skimage import io [as 別名]
# 或者: from skimage.io import imsave [as 別名]
def rotate_images(file_path, degrees_of_rotation, lst_imgs):
'''
Rotates image based on a specified amount of degrees
INPUT
file_path: file path to the folder containing images.
degrees_of_rotation: Integer, specifying degrees to rotate the
image. Set number from 1 to 360.
lst_imgs: list of image strings.
OUTPUT
Images rotated by the degrees of rotation specififed.
'''
for l in lst_imgs:
img = io.imread(file_path + str(l) + '.jpeg')
img = rotate(img, degrees_of_rotation)
io.imsave(file_path + str(l) + '_' + str(degrees_of_rotation) + '.jpeg', img)
示例8: SaveImage
# 需要導入模塊: from skimage import io [as 別名]
# 或者: from skimage.io import imsave [as 別名]
def SaveImage(img, filename, remove_noise=0.):
logging.info('save output to %s', filename)
out = PostprocessImage(img)
if remove_noise != 0.0:
out = denoise_tv_chambolle(out, weight=remove_noise, multichannel=True)
io.imsave(filename, out)
示例9: SaveImage
# 需要導入模塊: from skimage import io [as 別名]
# 或者: from skimage.io import imsave [as 別名]
def SaveImage(img, filename, remove_noise=0.02):
logging.info('save output to %s', filename)
out = PostprocessImage(img)
if remove_noise != 0.0:
out = denoise_tv_chambolle(out, weight=remove_noise, multichannel=True)
io.imsave(filename, out)
示例10: main
# 需要導入模塊: from skimage import io [as 別名]
# 或者: from skimage.io import imsave [as 別名]
def main():
global mainDir, fontsChinese
pygame.init()
shutil.rmtree(OUTPUT_DIR, ignore_errors=True)
os.makedirs(OUTPUT_DIR)
labels = open(os.path.join(OUTPUT_DIR, "labels.txt"), 'w')
labels.truncate()
i = 0
chiIdx = 0
outDir = None
# http://stackoverflow.com/questions/50499/how-do-i-get-the-path-and-name-of-the-file-that-is-currently-executing
selfPath = os.path.abspath(inspect.getfile(inspect.currentframe()))
mainDir, _ = os.path.split(selfPath)
dirFonts = os.path.join(mainDir, 'fonts_Chinese')
fnFonts = filter(lambda fn: os.path.splitext(fn)[1].lower() in [
'.ttf', '.otf'], os.listdir(dirFonts))
fontsChinese = list(
map(lambda fn: os.path.join(dirFonts, fn), fnFonts))
chiFiles = sorted(glob.glob('newsgroup/corpus-*.txt'))
outputPerChiFile = OUTPUT_NUM / len(chiFiles)
initChineseSource(chiFiles[0])
chiIdx += 1
for im, text in generate(OUTPUT_NUM):
if i % OUTPUT_BATCH == 0:
outDir = os.path.join(OUTPUT_DIR, str(int(i/OUTPUT_BATCH)))
os.makedirs(outDir)
if i != 0 and i % outputPerChiFile == 0:
initChineseSource(chiFiles[chiIdx])
chiIdx += 1
outf = os.path.join(outDir, '%s.jpg' % i)
# pygame.image.save(im, outf) #pygame
# im.save(outf) #PIL image
io.imsave(outf, im) # scikit-image
labels.write('%s/%s.jpg\t%s\n' % (int(i/OUTPUT_BATCH),
i, text))
print('done %s.jpg, text: %s' % (i, text))
i += 1
labels.close()
示例11: process_single
# 需要導入模塊: from skimage import io [as 別名]
# 或者: from skimage.io import imsave [as 別名]
def process_single(single, image_path, image_save_path, landmarks_save_path):
# print('Processing: {}'.format(single.image_base_name))
image_full_path = os.path.join(image_path, single.image_base_name)
image = io.imread(image_full_path)
if len(image.shape) == 2:
image = np.stack((image, image, image), -1)
pts = single.landmarks
left, top, right, bottom = [int(x) for x in single.bbox]
lr_pad = int(0.05 * (right - left) / 2)
tb_pad = int(0.05 * (bottom - top) / 2)
left = max(0, left - lr_pad)
right = right + lr_pad
top = max(0, top - tb_pad)
bottom = bottom + tb_pad
center = torch.FloatTensor(
[right - (right - left) / 2.0, bottom -
(bottom - top) / 2.0])
scale_factor = 250.0
scale = (right - left + bottom - top) / scale_factor
new_image, new_landmarks = cv_crop(image, pts, center, scale, 450, 0)
while np.min(new_landmarks) < 10 or np.max(new_landmarks) > 440:
scale_factor -= 10
scale = (right - left + bottom - top) / scale_factor
new_image, new_landmarks = cv_crop(image, pts, center, scale, 450, 0)
assert (scale_factor > 0), "Landmarks out of boundary!"
if new_image != []:
io.imsave(os.path.join(image_save_path, os.path.basename(image_full_path[:-4]+'_' + str(single.idx) + image_full_path[-4:])), new_image)
np.save(os.path.join(landmarks_save_path, os.path.basename(image_full_path[:-4]+ '_' + str(single.idx) + '.pts')), new_landmarks)
示例12: save_image_collections
# 需要導入模塊: from skimage import io [as 別名]
# 或者: from skimage.io import imsave [as 別名]
def save_image_collections(x, filename, shape=(10, 10), scale_each=False,
transpose=False):
"""
:param shape: tuple
The shape of final big images.
:param x: numpy array
Input image collections. (number_of_images, rows, columns, channels) or
(number_of_images, channels, rows, columns)
:param scale_each: bool
If true, rescale intensity for each image.
:param transpose: bool
If true, transpose x to (number_of_images, rows, columns, channels),
i.e., put channels behind.
:return: `uint8` numpy array
The output image.
"""
from skimage import io, img_as_ubyte
from skimage.exposure import rescale_intensity
makedirs(filename)
n = x.shape[0]
if transpose:
x = x.transpose(0, 2, 3, 1)
if scale_each is True:
for i in range(n):
x[i] = rescale_intensity(x[i], out_range=(0, 1))
n_channels = x.shape[3]
x = img_as_ubyte(x)
r, c = shape
if r * c < n:
print('Shape too small to contain all images')
h, w = x.shape[1:3]
ret = np.zeros((h * r, w * c, n_channels), dtype='uint8')
for i in range(r):
for j in range(c):
if i * c + j < n:
ret[i * h:(i + 1) * h, j * w:(j + 1) * w, :] = x[i * c + j]
ret = ret.squeeze()
io.imsave(filename, ret)
示例13: handle_single
# 需要導入模塊: from skimage import io [as 別名]
# 或者: from skimage.io import imsave [as 別名]
def handle_single(self, path):
try:
img = skimage_io.imread(path, flatten=True)
img = self.data_proc.apply(img)
if not self.dry_run:
skimage_io.imsave(path, img)
except ValueError as e:
print(e)
print(path)
示例14: saveSpectrogramToImage
# 需要導入模塊: from skimage import io [as 別名]
# 或者: from skimage.io import imsave [as 別名]
def saveSpectrogramToImage(spectrogram, filePath):
image = np.clip((spectrogram - np.min(spectrogram)) / (np.max(spectrogram) - np.min(spectrogram)), 0, 1)
# Ignore Low-contrast image warnings
with warnings.catch_warnings():
warnings.simplefilter("ignore")
io.imsave(filePath, image)
示例15: save_image
# 需要導入模塊: from skimage import io [as 別名]
# 或者: from skimage.io import imsave [as 別名]
def save_image(image, save_dir, name):
"""
Save image by unprocessing and converting to rgb.
:param image: iamge to save
:param save_dir: location to save image at
:param name: prefix to save filename
:return:
"""
image = color.lab2rgb(image)
io.imsave(os.path.join(save_dir, name + ".png"), image)