當前位置: 首頁>>代碼示例>>Python>>正文


Python filters.threshold_otsu方法代碼示例

本文整理匯總了Python中skimage.filters.threshold_otsu方法的典型用法代碼示例。如果您正苦於以下問題:Python filters.threshold_otsu方法的具體用法?Python filters.threshold_otsu怎麽用?Python filters.threshold_otsu使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在skimage.filters的用法示例。


在下文中一共展示了filters.threshold_otsu方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: project_object_edge

# 需要導入模塊: from skimage import filters [as 別名]
# 或者: from skimage.filters import threshold_otsu [as 別名]
def project_object_edge(img, dimension):
    """ scale the image, binarise with Othu and project to one dimension

    :param ndarray img:
    :param int dimension: select dimension for projection
    :return list(float):

    >>> img = np.zeros((20, 10, 3))
    >>> img[2:6, 1:7, :] = 1
    >>> img[10:17, 4:6, :] = 1
    >>> project_object_edge(img, 0).tolist()  # doctest: +NORMALIZE_WHITESPACE
    [0.0, 0.0, 0.7, 0.7, 0.7, 0.7, 0.0, 0.0, 0.0, 0.0,
     0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.0, 0.0, 0.0]
    """
    assert dimension in (0, 1), 'not supported dimension %i' % dimension
    assert img.ndim == 3, 'unsupported image shape %r' % img.shape
    img_gray = np.mean(img, axis=-1)
    img_gray = GaussianBlur(img_gray, (5, 5), 0)
    p_low, p_high = np.percentile(img_gray, (1, 95))
    img_gray = rescale_intensity(img_gray, in_range=(p_low, p_high))
    img_bin = img_gray > threshold_otsu(img_gray)
    img_edge = np.mean(img_bin, axis=1 - dimension)
    return img_edge 
開發者ID:Borda,項目名稱:BIRL,代碼行數:25,代碼來源:dataset.py

示例2: run

# 需要導入模塊: from skimage import filters [as 別名]
# 或者: from skimage.filters import threshold_otsu [as 別名]
def run(args):
    logging.basicConfig(level=logging.INFO)

    slide = openslide.OpenSlide(args.wsi_path)

    # note the shape of img_RGB is the transpose of slide.level_dimensions
    img_RGB = np.transpose(np.array(slide.read_region((0, 0),
                           args.level,
                           slide.level_dimensions[args.level]).convert('RGB')),
                           axes=[1, 0, 2])

    img_HSV = rgb2hsv(img_RGB)

    background_R = img_RGB[:, :, 0] > threshold_otsu(img_RGB[:, :, 0])
    background_G = img_RGB[:, :, 1] > threshold_otsu(img_RGB[:, :, 1])
    background_B = img_RGB[:, :, 2] > threshold_otsu(img_RGB[:, :, 2])
    tissue_RGB = np.logical_not(background_R & background_G & background_B)
    tissue_S = img_HSV[:, :, 1] > threshold_otsu(img_HSV[:, :, 1])
    min_R = img_RGB[:, :, 0] > args.RGB_min
    min_G = img_RGB[:, :, 1] > args.RGB_min
    min_B = img_RGB[:, :, 2] > args.RGB_min

    tissue_mask = tissue_S & tissue_RGB & min_R & min_G & min_B

    np.save(args.npy_path, tissue_mask) 
開發者ID:baidu-research,項目名稱:NCRF,代碼行數:27,代碼來源:tissue_mask.py

示例3: threshold_segmentation

# 需要導入模塊: from skimage import filters [as 別名]
# 或者: from skimage.filters import threshold_otsu [as 別名]
def threshold_segmentation(img):
    # calculate the overview level size and retrieve the image
    img_hsv = img.convert('HSV')
    img_hsv_np = np.array(img_hsv)

    # dilate image and then threshold the image
    schannel = img_hsv_np[:, :, 1]
    mask = np.zeros(schannel.shape)

    schannel = dilation(schannel, star(3))
    schannel = ndimage.gaussian_filter(schannel, sigma=(5, 5), order=0)
    threshold_global = threshold_otsu(schannel)

    mask[schannel > threshold_global] = FOREGROUND
    mask[schannel <= threshold_global] = BACKGROUND

    return mask 
開發者ID:iMoonLab,項目名稱:THU-DeepHypergraph,代碼行數:19,代碼來源:sample_patches.py

示例4: __call__

# 需要導入模塊: from skimage import filters [as 別名]
# 或者: from skimage.filters import threshold_otsu [as 別名]
def __call__(self, image, test):
        image_data = numpy.asarray(image, dtype=numpy.float32)[:, :, :3]
        rgb_image_data = image_data.transpose(2, 0, 1)
        lab_image_data = rgb2lab(image_data / 255).transpose(2, 0, 1).astype(numpy.float32)
        luminous_image_data = lab_image_data[0].astype(numpy.uint8)

        try:
            th = threshold_otsu(luminous_image_data)
        except:
            import traceback
            print(traceback.format_exc())
            th = 0

        linedrawing = (luminous_image_data > th).astype(numpy.float32)
        linedrawing = numpy.expand_dims(linedrawing, axis=0)

        return lab_image_data, linedrawing, rgb_image_data 
開發者ID:DwangoMediaVillage,項目名稱:Comicolorization,代碼行數:19,代碼來源:comicolorization_task.py

示例5: get_dark_mask

# 需要導入模塊: from skimage import filters [as 別名]
# 或者: from skimage.filters import threshold_otsu [as 別名]
def get_dark_mask(full_data):
    #get darker objects that are unlikely to be worm
    if full_data.shape[0] < 2:
        #nothing to do here returning
        return np.zeros((full_data.shape[1], full_data.shape[2]), np.uint8)
    
    #this mask shoulnd't contain many worms
    img_h = cv2.medianBlur(np.max(full_data, axis=0), 5)
    #this mask is likely to contain a lot of worms
    img_l = cv2.medianBlur(np.min(full_data, axis=0), 5)
    
    #this is the difference (the tagged pixels should be mostly worms)
    img_del = img_h-img_l
    th_d = threshold_otsu(img_del)
    
    #this is the maximum of the minimum pixels of the worms...
    th = np.max(img_l[img_del>th_d])
    #this is what a darkish mask should look like
    dark_mask = cv2.dilate((img_h<th).astype(np.uint8), disk(11))
    
    return dark_mask 
開發者ID:ver228,項目名稱:tierpsy-tracker,代碼行數:23,代碼來源:getFoodContourMorph.py

示例6: MaxBodyBox

# 需要導入模塊: from skimage import filters [as 別名]
# 或者: from skimage.filters import threshold_otsu [as 別名]
def MaxBodyBox(input):
    Otsu=filters.threshold_otsu(input[input.shape[0]//2])
    Seg=np.zeros(input.shape)
    Seg[input>=Otsu]=255
    Seg=Seg.astype(np.int)
    ConnectMap=label(Seg, connectivity= 2)
    Props = regionprops(ConnectMap)
    Area=np.zeros([len(Props)])
    Area=[]
    Bbox=[]
    for j in range(len(Props)):
        Area.append(Props[j]['area'])
        Bbox.append(Props[j]['bbox'])
    Area=np.array(Area)
    Bbox=np.array(Bbox)
    argsort=np.argsort(Area)
    Area=Area[argsort]
    Bbox=Bbox[argsort]
    Area=Area[::-1]
    Bbox=Bbox[::-1,:]
    MaximumBbox=Bbox[0]
    return Otsu,MaximumBbox 
開發者ID:huangyjhust,項目名稱:3D-RU-Net,代碼行數:24,代碼來源:data_loader.py

示例7: remove_background

# 需要導入模塊: from skimage import filters [as 別名]
# 或者: from skimage.filters import threshold_otsu [as 別名]
def remove_background(img: np.ndarray) -> np.ndarray:
        """ Remove noise using OTSU's method.

        Parameters
        ----------
        img : np.ndarray
            The image to be processed

        Returns
        -------
        np.ndarray
            The image with background removed
        """

        img = img.astype(np.uint8)
        # Binarize the image using OTSU's algorithm. This is used to find the center
        # of mass of the image, and find the threshold to remove background noise
        threshold = filters.threshold_otsu(img)

        # Remove noise - anything higher than the threshold. Note that the image is still grayscale
        img[img > threshold] = 255

        return img 
開發者ID:luizgh,項目名稱:sigver,代碼行數:25,代碼來源:normalize.py

示例8: predict

# 需要導入模塊: from skimage import filters [as 別名]
# 或者: from skimage.filters import threshold_otsu [as 別名]
def predict(obj, ctx):
    """
    A prediction function.

    Args:
        obj (bytearray): a list of object (or a single object) to predict on
        ctx (dict): a model training context

    Returns:
        a list with predictions

    """
    binary_image = Image.open(BytesIO(obj)).convert('L')
    img = resize(np.array(binary_image), (28, 28), preserve_range=True)
    threshold = threshold_otsu(img)
    img_colors_inverted = list(map(lambda el: 0 if el > threshold else int(255 - el), img.flatten()))
    img_transformed = ctx['scaler'].transform([img_colors_inverted])
    df = pd.DataFrame(img_transformed)  # convert to DataFrame (pandas)
    return ctx['model'].predict(df).tolist() 
開發者ID:KI-labs,項目名稱:kaos,代碼行數:21,代碼來源:model.py

示例9: evaluate

# 需要導入模塊: from skimage import filters [as 別名]
# 或者: from skimage.filters import threshold_otsu [as 別名]
def evaluate(self,img):
    img = cv2.medianBlur(img,5)
    if self.auto_thresh:
      self.thresh = threshold_otsu(img)
    if self.white_spots:
      bw = (img > self.thresh).astype(np.uint8)
    else:
      bw = (img <= self.thresh).astype(np.uint8)
    #cv2.imshow(self.name,bw*255)
    #cv2.waitKey(5)
    if not .1* img.size < np.count_nonzero(bw) < .8*img.size:
      print("reevaluating threshold!!")
      print("Ratio:",np.count_nonzero(bw)/img.size)
      print("old:",self.thresh)
      self.thresh = threshold_otsu(img)
      print("new:",self.thresh)
    m = cv2.moments(bw)
    r = {}
    try:
      r['x'] = m['m10']/m['m00']
      r['y'] = m['m01']/m['m00']
    except ZeroDivisionError:
      return -1
    x,y,w,h = cv2.boundingRect(bw)
    #if (h,w) == img.shape:
    #  return -1
    r['bbox'] = y,x,y+h,x+w
    return r 
開發者ID:LaboratoireMecaniqueLille,項目名稱:crappy,代碼行數:30,代碼來源:videoextenso.py

示例10: fallback

# 需要導入模塊: from skimage import filters [as 別名]
# 或者: from skimage.filters import threshold_otsu [as 別名]
def fallback(self,img):
    """Called when the spots are lost"""
    if self.safe_mode or self.fallback_mode:
      if self.fallback_mode:
        self.pipe.send("Fallback failed")
      else:
        self.pipe.send("[safe mode] Could not compute barycenter")
      self.fallback_mode = False
      return -1
    self.fallback_mode = True
    print("Loosing spot! Trying to reevaluate threshold...")
    self.thresh = threshold_otsu(img)
    return self.evaluate(img) 
開發者ID:LaboratoireMecaniqueLille,項目名稱:crappy,代碼行數:15,代碼來源:videoextenso.py

示例11: __call__

# 需要導入模塊: from skimage import filters [as 別名]
# 或者: from skimage.filters import threshold_otsu [as 別名]
def __call__(self, img_small):
        m = morphology.square(self.square_size)
        img_th = morphology.black_tophat(img_small, m)
        img_sob = abs(filters.sobel_v(img_th))
        img_closed = morphology.closing(img_sob, m)
        threshold = filters.threshold_otsu(img_closed)
        return img_closed > threshold 
開發者ID:konstantint,項目名稱:PassportEye,代碼行數:9,代碼來源:image.py

示例12: remove_noise

# 需要導入模塊: from skimage import filters [as 別名]
# 或者: from skimage.filters import threshold_otsu [as 別名]
def remove_noise(img):
    th = filters.threshold_otsu(img)
    bin_img = img > th
    regions, num = ndimage.label(bin_img)
    areas = []
    for i in range(num):
        areas.append(np.sum(regions == i+1))
    img[regions != np.argmax(areas)+1] = 0
    return img 
開發者ID:CUHKSZ-TQL,項目名稱:EverybodyDanceNow_reproduce_pytorch,代碼行數:11,代碼來源:openpose_utils.py

示例13: compCentroid_detect1

# 需要導入模塊: from skimage import filters [as 別名]
# 或者: from skimage.filters import threshold_otsu [as 別名]
def compCentroid_detect1(fcn, savefolder):
	data_dict = sio.loadmat(fcn)
	f = matlab_style_gauss2D((10,10),0.25)
	A = cv2.filter2D(data_dict['A'], -1, f)

	level = threshold_otsu(A) #otsu threshold of image
	bw = A > level #binary image
	L,num = label(bw,8,return_num=True) #label  the segmented blobs
	#import pdb;pdb.set_trace()
	plot_x = np.zeros((num, 1)) # location of centroid
	plot_y = np.zeros((num, 1))

	sum_x = np.zeros((num, 1))
	sum_y = np.zeros((num, 1))
	area = np.zeros((num, 1))
	score = np.zeros((num, 1))

	height,width = bw.shape[0], bw.shape[1]
	for i in range(height):
		for j in range(width):
			if L[i,j] != 0:
				N = L[i,j]
				sum_x[N-1] = sum_x[N-1]+i*A[i,j]
				sum_y[N-1] = sum_y[N-1]+j*A[i,j]
				area[N-1] = area[N-1] + 1
				score[N-1] = score[N-1] + A[i,j]

	plot_x = np.around(sum_x*1.0/score)
	plot_y = np.around(sum_y*1.0/score)
	score = score*1.0/area
	centroid = np.zeros((num,2))
	for row in range(num):
		centroid[row,0] = plot_x[row,0]
		centroid[row,1] = plot_y[row,0]
	#centroid = np.mat(centroid)
	savefile = savefolder + fcn[-9:]
	sio.savemat(savefile,{'centroid':centroid, 'area':area, 'score':score}) 
開發者ID:ChaoLi977,項目名稱:SegMitos_mitosis_detection,代碼行數:39,代碼來源:getDETCentroid.py

示例14: otsu

# 需要導入模塊: from skimage import filters [as 別名]
# 或者: from skimage.filters import threshold_otsu [as 別名]
def otsu(data, nbins):
    from skimage.filters import threshold_otsu
    thresh = threshold_otsu(data, nbins)
    return data > thresh 
開發者ID:neuropoly,項目名稱:spinalcordtoolbox,代碼行數:6,代碼來源:sct_maths.py

示例15: clean_mask

# 需要導入模塊: from skimage import filters [as 別名]
# 或者: from skimage.filters import threshold_otsu [as 別名]
def clean_mask(m, c):
    # threshold
    m_thresh = threshold_otsu(m)
    c_thresh = threshold_otsu(c)
    m_b = m > m_thresh
    c_b = c > c_thresh

    # combine contours and masks and fill the cells
    m_ = np.where(m_b | c_b, 1, 0)
    m_ = ndi.binary_fill_holes(m_)

    # close what wasn't closed before
    area, radius = mean_blob_size(m_b)
    struct_size = int(1.25 * radius)
    struct_el = morph.disk(struct_size)
    m_padded = pad_mask(m_, pad=struct_size)
    m_padded = morph.binary_closing(m_padded, selem=struct_el)
    m_ = crop_mask(m_padded, crop=struct_size)

    # open to cut the real cells from the artifacts
    area, radius = mean_blob_size(m_b)
    struct_size = int(0.75 * radius)
    struct_el = morph.disk(struct_size)
    m_ = np.where(c_b & (~m_b), 0, m_)
    m_padded = pad_mask(m_, pad=struct_size)
    m_padded = morph.binary_opening(m_padded, selem=struct_el)
    m_ = crop_mask(m_padded, crop=struct_size)

    # join the connected cells with what we had at the beginning
    m_ = np.where(m_b | m_, 1, 0)
    m_ = ndi.binary_fill_holes(m_)

    # drop all the cells that weren't present at least in 25% of area in the initial mask
    m_ = drop_artifacts(m_, m_b, min_coverage=0.25)

    return m_ 
開發者ID:minerva-ml,項目名稱:open-solution-data-science-bowl-2018,代碼行數:38,代碼來源:postprocessing.py


注:本文中的skimage.filters.threshold_otsu方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。