當前位置: 首頁>>代碼示例>>Python>>正文


Python rank.entropy方法代碼示例

本文整理匯總了Python中skimage.filters.rank.entropy方法的典型用法代碼示例。如果您正苦於以下問題:Python rank.entropy方法的具體用法?Python rank.entropy怎麽用?Python rank.entropy使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在skimage.filters.rank的用法示例。


在下文中一共展示了rank.entropy方法的4個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: updateRasterInfo

# 需要導入模塊: from skimage.filters import rank [as 別名]
# 或者: from skimage.filters.rank import entropy [as 別名]
def updateRasterInfo(self, **kwargs):
        kwargs['output_info']['statistics'] = ()
        kwargs['output_info']['histogram'] = ()

        self.window = square(int(kwargs.get('size', 3)))
        m = kwargs.get('measure', 'Mean').lower()
        if m == 'minimum':
            self.func = rank.minimum
        elif m == 'maximum':
            self.func = rank.maximum
        elif m == 'mean':
            self.func = rank.mean
        elif m == 'bilateral mean':
            self.func = rank.mean_bilateral
        elif m == 'median':
            self.func = rank.median
        elif m == 'sum':
            self.func = rank.sum
        elif m == 'entropy':
            self.func = rank.entropy
        elif m == 'threshold':
            self.func = rank.threshold
        elif m == 'autolevel':
            self.func = rank.autolevel
        return kwargs 
開發者ID:Esri,項目名稱:raster-functions,代碼行數:27,代碼來源:RankFilter.py

示例2: patches_by_entropy

# 需要導入模塊: from skimage.filters import rank [as 別名]
# 或者: from skimage.filters.rank import entropy [as 別名]
def patches_by_entropy(self, num_patches):
        '''
        Finds high-entropy patches based on label, allows net to learn borders more effectively.
        INPUT: int 'num_patches': defaults to num_samples, enter in quantity it using in conjunction with randomly sampled patches.
        OUTPUT: list of patches (num_patches, 4, h, w) selected by highest entropy
        '''
        patches, labels = [], []
        ct = 0
        while ct < num_patches:
            im_path = random.choice(training_images)
            fn = os.path.basename(im_path)
            label = io.imread('Labels/' + fn[:-4] + 'L.png')

            # pick again if slice is only background
            if len(np.unique(label)) == 1:
                continue

            img = io.imread(im_path).reshape(5, 240, 240)[:-1].astype('float')
            l_ent = entropy(label, disk(self.h))
            top_ent = np.percentile(l_ent, 90)

            # restart if 80th entropy percentile = 0
            if top_ent == 0:
                continue

            highest = np.argwhere(l_ent >= top_ent)
            p_s = random.sample(highest, 3)
            for p in p_s:
                p_ix = (p[0]-(h/2), p[0]+((h+1)/2), p[1]-(w/2), p[1]+((w+1)/2))
                patch = np.array([i[p_ix[0]:p_ix[1], p_ix[2]:p_ix[3]] for i in img])
                # exclude any patches that are too small
                if np.shape(patch) != (4,65,65):
                    continue
                patches.append(patch)
                labels.append(label[p[0],p[1]])
            ct += 1
            return np.array(patches[:num_samples]), np.array(labels[:num_samples]) 
開發者ID:naldeborgh7575,項目名稱:brain_segmentation,代碼行數:39,代碼來源:patch_library.py

示例3: make_training_patches

# 需要導入模塊: from skimage.filters import rank [as 別名]
# 或者: from skimage.filters.rank import entropy [as 別名]
def make_training_patches(self, entropy=False, balanced_classes=True, classes=[0,1,2,3,4]):
        '''
        Creates X and y for training CNN
        INPUT   (1) bool 'entropy': if True, half of the patches are chosen based on highest entropy area. defaults to False.
                (2) bool 'balanced classes': if True, will produce an equal number of each class from the randomly chosen samples
                (3) list 'classes': list of classes to sample from. Only change default oif entropy is False and balanced_classes is True
        OUTPUT  (1) X: patches (num_samples, 4_chan, h, w)
                (2) y: labels (num_samples,)
        '''
        if balanced_classes:
            per_class = self.num_samples / len(classes)
            patches, labels = [], []
            progress.currval = 0
            for i in progress(xrange(len(classes))):
                p, l = self.find_patches(classes[i], per_class)
                # set 0 <= pix intensity <= 1
                for img_ix in xrange(len(p)):
                    for slice in xrange(len(p[img_ix])):
                        if np.max(p[img_ix][slice]) != 0:
                            p[img_ix][slice] /= np.max(p[img_ix][slice])
                patches.append(p)
                labels.append(l)
            return np.array(patches).reshape(self.num_samples, 4, self.h, self.w), np.array(labels).reshape(self.num_samples)

        else:
            print "Use balanced classes, random won't work." 
開發者ID:naldeborgh7575,項目名稱:brain_segmentation,代碼行數:28,代碼來源:patch_library.py

示例4: filter

# 需要導入模塊: from skimage.filters import rank [as 別名]
# 或者: from skimage.filters.rank import entropy [as 別名]
def filter(self, array, *args, **kwargs):
            shp = array.shape
            array = array.reshape((np.prod(shp[0:-2]),) + shp[-2:])   # reshape to (nch, ny, nx)
            selem = np.ones(self.win)
            for k, amp in enumerate(np.abs(array)):  # loop over channels
                array[k, ...] = skentropy(sarscale(amp), selem)

            array = array.reshape(shp)      # back to original shape
            return array 
開發者ID:birgander2,項目名稱:PyRAT,代碼行數:11,代碼來源:Texture.py


注:本文中的skimage.filters.rank.entropy方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。